Debugging with GDB

The GNU Source-Level Debugger

Tenth Edition, for GDB version Red Hat Enterprise Linux 8.0.1-36.el7

(GDB)

Richard Stallman, Roland Pesch, Stan Shebs, et al.

Send bugs and comments on GDB to http://www.gnu.org/software/gdb/bugs/.
g p g g g g
Debugging with GDB
TgXinfo 2013-02-01.11

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
ISBN 978-0-9831592-3-0

Copyright (©) 1988-2017 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with the Invariant Sections being “Free Software” and “Free
Software Needs Free Documentation”, with the Front-Cover Texts being “A GNU Manual,”
and with the Back-Cover Texts as in (a) below.

(a) The FSF’s Back-Cover Text is: “You are free to copy and modify this GNU Man-
ual. Buying copies from GNU Press supports the FSF in developing GNU and promoting
software freedom.”

http://www.gnu.org/software/gdb/bugs/

Table of Contents

Summary of GDB.......... 1
Free Software 1
Free Software Needs Free Documentation............................ 1
Contributors 10 GDB. ...ttt 3

1 A Sample GDB Session.......................... 7

2 Getting In and Outof DB 11
2.1 InvoKing GDB ...ttt 11

2.1.1 Choosing Files ... 12
2.1.2 Choosing Modes ...ttt 13
2.1.3 What GDB Does During Startup.......................... 16
2.2 QUItEING GDB .ttt 17
2.3 Shell Commandsuiiiiiii i, 17
2.4 Logging Output.......o.uiiii e e 18

3 GDBCommands.............cooiiiiiiiiiiii... 19
3.1 Command Syntax.........coouuuueiiniiiiii i 19
3.2 Command Completionccoiuiiiiiiieiiiinennnn... 19
3.3 Getting Help ... 22

4 Running Programs Under GDB............... 25
4.1 Compiling for Debugging.............ooooiiiiiiii .. 25
4.2 Starting your Program i i 26
4.3 Your Program’s Argumentsoiiiiiiiiiiiiiii 30
4.4 Your Program’s Environment............. oL 30
4.5 Your Program’s Working Directory..................... 31
4.6 Your Program’s Input and Output 32
4.7 Debugging an Already-running Process........................ 32
4.8 Killing the Child Process............c.ooiiiiiiii .. 33
4.9 Debugging Multiple Inferiors and Programs.................... 33
4.10 Debugging Programs with Multiple Threads.................. 36
4.11 Debugging Forks........ ..o 40
4.12 Setting a Bookmark to Return to Later....................... 43

4.12.1 A Non-obvious Benefit of Using Checkpoints............. 44

ii Debugging with GDB

5 Stopping and Continuing 45
5.1 Breakpoints, Watchpoints, and Catchpoints 45
5.1.1 Setting Breakpointsot 46
5.1.2 Setting Watchpoints........... ... o i 52
5.1.3 Setting Catchpoints............oooiiiiiiiii .. 54
5.1.4 Deleting Breakpoints.............coooiiiiiiiii i, 59
5.1.5 Disabling Breakpoints.................ooiiiiiiiiiiii 60
5.1.6 Break Conditions............ ..ot 61
5.1.7 Breakpoint Command Lists 62
5.1.8 Dynamic Printf 64
5.1.9 How to save breakpoints toafile......................... 65
5.1.10 Static Probe Points i 65
5.1.11 “Cannot insert breakpoints”............. 67
5.1.12 “Breakpoint address adjusted...” 67
5.2 Continuing and Stepping..........cooviiiiiiiiiiiiiiiiia.. 68
5.3 Skipping Over Functions and Files 71
D4 Signals. ... 74
5.5 Stopping and Starting Multi-thread Programs................. 7
5.5.1 All-Stop Mode ... 77
5.5.2 Non-Stop Mode ..o 78
5.5.3 Background Executiono 79
5.5.4 Thread-Specific Breakpoints................, 80
5.5.5 Interrupted System Calls.............. ... i 81
5.5.6 Observer Mode.c.oiiiiie i 82

6 Running programs backward................. 85

7 Recording Inferior’s Execution and Replaying

Tt 87

8 Examining the Stack.......................... 95
8.1 Stack Framest 95
8.2 Backtraceso 96
8.3 Selecting a Frame.......... 98
8.4 Information About a Frame iiii... 99

8.5 Management of Frame Filters............. 100

9 Examining Source Files...................... 103

9.1 Printing Source Lines 103
9.2 Specifying a Location........... ..o i 104
9.2.1 Linespec Locations............oouiiiiiiiiiiiiinnnnnna... 104
9.2.2 Explicit Locations.......... i i 105
9.2.3 Address Locations. ..., 106
9.3 Editing Source Files........ ... i 106
9.3.1 Choosing your Editor o i 107
9.4 Searching Source Files i i 107
9.5 Specifying Source Directories., 107
9.6 Source and Machine Code............... ... 110
10 Examining Data............................. 115
10.1 EXPressions.ttt 117
10.2 Ambiguous EXpressionso.oeeiiiiiiiiiiii .. 118
10.3 Program Variables.......... i i 119
10.4 Artificial ATraysooiii 121
10.5 Output Formatso 122
10.6 Examining Memoryc..oiiiiiiiiiiiiii i 123
10.7 Automatic Display. ... 126
10.8 Print Settings.o.oeii i 127
10.9 Pretty Printing o i i i 135
10.9.1 Pretty-Printer Introduction 136
10.9.2 Pretty-Printer Example 136
10.9.3 Pretty-Printer Commands.......................oouis. 137
10.10 Value History.......coouiiii e 138
10.11 Convenience Variables, 139
10.12 Convenience Functions., 141
10.13 Registers 144
10.14 Floating Point Hardware............ 146
10.15 Vector Unit......ccooiiiiniii e 146
10.16 Operating System Auxiliary Information................... 146
10.17 Memory Region Attributes............ L 148
10.17.1 Attributeso 149
10.17.1.1 Memory Access Modecoviiiiiii. ... 149
10.17.1.2 Memory Access SiZ€.....o.veirieieiniann.. 149
10.17.1.3 DataCache........ ..o, 149
10.17.2 Memory Access Checkingt 150
10.18 Copy Between Memory and a File 150
10.19 How to Produce a Core File from Your Program 151
10.20 Character Sets.oouuuiini e 152
10.21 Caching Data of Targets...........cooiiiiiiiiiiiie . 154
10.22 Search Memoryot 156
10.23 Value SizZes ...t 157
11 Debugging Optimized Code................ 159
11.1 Inline Functions i 159

11.2 Tail Call Framesot e 160

iv Debugging with GDB

12 C Preprocessor Macros..................... 163
13 Tracepoints.................... 167
13.1 Commands to Set Tracepointscoooiiiiiiia .. 167
13.1.1 Create and Delete Tracepoints 168
13.1.2 Enable and Disable Tracepoints........................ 170
13.1.3 Tracepoint Passcounts, 170
13.1.4 Tracepoint Conditions.o, 171
13.1.5 Trace State Variableso il 171
13.1.6 Tracepoint Action Lists................ooiiiiiii.. 172
13.1.7 Listing Tracepointscoiiiiiiiiiiieenann. 174
13.1.8 Listing Static Tracepoint Markers...................... 175
13.1.9 Starting and Stopping Trace Experiments 176
13.1.10 Tracepoint Restrictionscooiii... 178

13.2 Using the Collected Data i, 179
13.2.1 tfind m. .o 179
13.2.2 BAUMP . vttt e e 181
13.2.3 save tracepoints filename........................... 182

13.3 Convenience Variables for Tracepoints....................... 182
13.4 Using Trace Fileso 183

14 Debugging Programs That Use Overlays

... 185
14.1 How Overlays Work...... i i, 185
14.2 Overlay Commandsouiiiutiiiii i, 186
14.3 Automatic Overlay Debugging 188
14.4 Overlay Sample Program, 189

15 Using ¢DB with Different Languages...... 191
15.1 Switching Between Source Languages 191
15.1.1 List of Filename Extensions and Languages............. 191
15.1.2 Setting the Working Language 192
15.1.3 Having GDB Infer the Source Language................. 192
15.2 Displaying the Language.............coiiiiiiiiii ... 192
15.3 Type and Range Checkingot 193
15.3.1 An Overview of Type Checking 193
15.3.2 An Overview of Range Checking 194
15.4 Supported Languages. ... 195
1541 Cand CH+. o 195
15.4.1.1 Cand C++ Operatorsc.ooveiiiiennne... 195
15.4.1.2 Cand C++ Constantscoiiiii. ... 197
15.4.1.3 CH+ EXPressionso.eveeiitennnennnea . 198
15.4.1.4 Cand C++ Defaults............cooiiiiiiii.. 199
15.4.1.5 C and C++ Type and Range Checks............... 199
15416 cDBand C.........ooiiiiiiii 199
15.4.1.7 DB Features for C++, 199

15.4.1.8 Decimal Floating Point format 201

15.4.3 GO 201
15.4.4 Objective-C. ..ot 202
15.4.4.1 Method Names in Commands 202
15.4.4.2 The Print Command With Objective-C............ 202
15.4.5 OpenCL C. ... 203
15.4.5.1 OpenCL C Datatypes.........ccooiiiiiiiii... 203
15.4.5.2 OpenCL C ExXpressions..........c.ooeveiiiean... 203
15.4.5.3 OpenCL C Operatorscooovviiiiinine... 203
15.4.6 Fortranmot 203
15.4.6.1 Fortran Operators and Expressions................ 203
15.4.6.2 Fortran Defaults.................................. 203
15.4.6.3 Special Fortran Commands........................ 203
15.4.7 Pascal ... 204
15.4.8 RuUSt. . 204
15.4.9 Modula-2 ... 205
15.4.9.1 Operators.oouuuiiiii i 205
15.4.9.2 Built-in Functions and Procedures................. 206
15.4.9.3 Constants. ..ot 207
15.4.9.4 Modula-2 Types.....couuiiiiiiiiiiiiii i 208
15.4.9.5 Modula-2 Defaults 210
15.4.9.6 Deviations from Standard Modula-2............... 210
15.4.9.7 Modula-2 Type and Range Checks................. 210
15.4.9.8 The Scope Operators :: and 210
15.4.99 ¢pBand Modula-2................. . ..l 211
15410 Ada ... 211
15.4.10.1 Introduction............... ... i, 211
15.4.10.2 Omissions from Ada 212
15.4.10.3 Additions to Ada ... 213
15.4.10.4 Overloading support for Ada..................... 214
15.4.10.5 Stopping at the Very Beginning 215
15.4.10.6 Ada Exceptions............ooiiiiiiiiiiiiiiia.a. 215
15.4.10.7 Extensions for Ada Tasks 215
15.4.10.8 Tasking Support when Debugging Core Files 218
15.4.10.9 Tasking Support when using the Ravenscar Profile
.. 219
15.4.10.10 Known Peculiarities of Ada Mode 219
15.5 Unsupported Languages ..., 220

16 Examining the Symbol Table.............. 221

vi Debugging with GDB

17 Altering Execution.......................... 229
17.1 Assignment to Variables L. 229
17.2 Continuing at a Different Address........................... 230
17.3 Giving your Program a Signal.................. 231
17.4 Returning from a Function.............. 232
17.5 Calling Program Functions................, 233
17.6 Patching Programso i 234
17.7 Compiling and injecting code in GDB.................oouo... 234

17.7.1 Compilation options for the compile command......... 236
17.7.2 Caveats when using the compile command............. 236
17.7.3 Compiler search for the compile command............. 238

18 GDBFiles....... 241
18.1 Commands to Specify Files il 241
18.2 File Cachingo e 249
18.3 Debugging Information in Separate Files.................... 250
18.4 Debugging information in a special section 254
18.5 Index Files Speed Up GDBvvviiiiiiiii i 254
18.6 Errors Reading Symbol Files............ ...t 255
18.7 GDB Data Files ... 256

19 Specifying a Debugging Target 259
19.1 Active Targetsovn i e 259
19.2 Commands for Managing Targets 259
19.3 Choosing Target Byte Order........... o it 262

20 Debugging Remote Programs.............. 263
20.1 Connecting to a Remote Target 263

20.1.1 Types of Remote Connections..................coonu... 263
20.1.2 Host and Target Files.............o. it 264
20.1.3 Remote Connection Commands 265
20.2 Sending files to a remote system i 266
20.3 Using the gdbserver Programcooou.. 267
20.3.1 Running gdbserver.......... i 267
20.3.1.1 Attaching to a Running Program.................. 268
20.3.1.2 TCP port allocation lifecycle of gdbserver........ 268
20.3.1.3 Other Command-Line Arguments for gdbserver... 269
20.3.2 Connecting to gdbserverooiiiiiiiia... 269
20.3.3 Monitor Commands for gdbserver..................... 270
20.3.4 Tracepoints support in gdbserver...................... 271
20.4 Remote Configuration............ ..., 272
20.5 Implementing a Remote Stub 277
20.5.1 What the Stub Can Do for You........................ 278
20.5.2 What You Must Do for the Stub....................... 279

20.5.3 Putting it All Together..........., 280

vii

21 Configuration-Specific Information........ 283
211 NabiVe . . e 283
21.1.1 BSD libkvm Interface............ ..o 283
21.1.2 SVRA4 Process Information.................. 283
21.1.3 Features for Debugging DJGPP Programs 285
21.1.4 Features for Debugging MS Windows PE Executables .. 287
21.1.4.1 Support for DLLs without Debugging Symbols. 289
21.1.4.2 DLL Name Prefixescoooiiiiiii . 289
21.1.4.3 Working with Minimal Symbols 290
21.1.5 Commands Specific to GNU Hurd Systems.............. 290
21.1.6 Darwinttt 293
21.2 Embedded Operating Systems ..., 293
21.3 Embedded Processors............ccoooiiiiiiiiiiiiiiii 293
21.3.1 Synopsys ARC 294
21.3.2 ARM .. 294
21.3.3 MBBK .ttt 295
21.3.4 MicroBlaze 295
21.3.5 MIPS Embedded ... 296
21.3.6 PowerPC Embedded il 296
21.3.7 Atmel AVR 297
21.3.8 CRIS .. 298
21.3.9 Renesas Super-H....... i i 298
21.4 Architectureso 298
21.4.1 AArchB4. ... o 299
21.4.2 x86 Architecture-specific Issues......................... 299
21.4.2.1 Intel Memory Protection Extensions (MPX). 299
21.4.3 Alpha. ... 300
2144 MIPS et 300
21.4.5 HPPA ... 302
21.4.6 Cell Broadband Engine SPU architecture............... 302
21.4.7 PowerPC 303
21.4.8 Nios L. ..o 303
22 Controlling GDB ..., 305
22,1 Prompt.. ... 305
22.2 Command Editing ... i 305
22.3 Command Historyco i 306
22,4 SCTEEN SIZE ..ottt 307
225 NUmDETS .. oo 308
22.6 Configuring the Current ABI................................ 309
22.7 Automatically loading associated files.............. 310
22.7.1 Automatically loading init file in the current directory.. 312
22.7.2 Automatically loading thread debugging library 312
22.7.3 Security restriction for auto-loading 313
22.7.4 Displaying files tried for auto-load...................... 314
22.8 Optional Warnings and Messages.................coiia.. 315
22.9 Optional Messages about Internal Happenings............... 316

22.10 Other Miscellaneous Settings. ..., 321

viii Debugging with GDB

23 Extending GDB.............................. 323
23.1 Canned Sequences of Commands............................ 323
23.1.1 User-defined Commandsooiiiiia... 323
23.1.2 User-defined Command Hooks.......................... 325
23.1.3 Command Files..............ii i 326
23.1.4 Commands for Controlled Output...................... 328
23.1.5 Controlling auto-loading native GDB scripts............. 329
23.2 Extending ¢DB using Python L 330
23.2.1 Python Commandsoiiiiiiiii.. 330
23.2.2 Python API 331
23.2.2.1 Basic Python 331
23.2.2.2 Exception Handling 335
23.2.2.3 Values From Inferior 336
23.2.24 TypesIn Python..............o ... 340
23.2.2.5 Pretty Printing API........., 345
23.2.2.6 Selecting Pretty-Printers.................... 346
23.2.2.7 Writing a Pretty-Printer 347
23.2.2.8 Type Printing APT...... 349
23.2.2.9 Filtering Frames............ 350
23.2.2.10 Decorating Frames. L. 352
23.2.2.11 Writing a Frame Filter................... 354
23.2.2.12 Unwinding Frames in Python 358
23.2.2.13 Xmethods In Python.................... 360
23.2.2.14 Xmethod APIL.... i 361
23.2.2.15 Writing an Xmethod 363
23.2.2.16 Inferiors In Python............ 366
23.2.2.17 Events In Python L. 367
23.2.2.18 Threads In Python................ 370
23.2.2.19 Recordings In Python............... 371
23.2.2.20 Commands In Python...................... 375
23.2.2.21 Parameters In Python....................., 378
23.2.2.22 Writing new convenience functions 380
23.2.2.23 Program Spaces In Python....................... 381
23.2.2.24 Objfiles In Python 382
23.2.2.25 Accessing inferior stack frames from Python. 384
23.2.2.26 Accessing blocks from Python. 387
23.2.2.27 Python representation of Symbols. 389
23.2.2.28 Symbol table representation in Python............ 392
23.2.2.29 Manipulating line tables using Python............ 394
23.2.2.30 Manipulating breakpoints using Python 395
23.2.2.31 Finish Breakpoints.............. 398
23.2.2.32 Python representation of lazy strings. 398
23.2.2.33 Python representation of architectures............ 399
23.2.3 Python Auto-loading.............ol 400
23.2.4 Python modules i 400
23.2.4.1 gdb.printing..........co i 401
23.2.4.2 gdbtypes ..ot 401

23.2.4.3 gdb.prompt ... 402

23.3 Extending GDB using Guile oL 403
23.3.1 Guile Introduction i 403
23.3.2 Guile Commands ..ot 404
23.3.3 Guile AP ... 404

23.3.3.1 BasicGuile............. 404
23.3.3.2 Guile Configurationcooviiiiin... 406
23.3.3.3 GDB Scheme Data Types...........cccooviiia... 407
23.3.3.4 Guile Exception Handling 408
23.3.3.5 Values From Inferior In Guile 410
23.3.3.6 Arithmetic In Guile.............., 415
23.3.3.7 TypesInGuile........... il 416
23.3.3.8 Guile Pretty Printing APL........... 421
23.3.3.9 Selecting Guile Pretty-Printers.................... 422
23.3.3.10 Writing a Guile Pretty-Printer 423
23.3.3.11 Commands In Guile..................... 425
23.3.3.12 Parameters In Guile.............................. 429
23.3.3.13 Program Spaces In Guile......................... 432
23.3.3.14 ObjfilesIn Guile......... ..., 433
23.3.3.15 Accessing inferior stack frames from Guile. 433
23.3.3.16 Accessing blocks from Guile. 436
23.3.3.17 Guile representation of Symbols. 438
23.3.3.18 Symbol table representation in Guile.............. 441
23.3.3.19 Manipulating breakpoints using Guile 442
23.3.3.20 Guile representation of lazy strings. 446
23.3.3.21 Guile representation of architectures.............. 447
23.3.3.22 Disassembly In Guile..................... 449
23.3.3.23 I/OPortsin Guile..................oooiiia... 449
23.3.3.24 Memory Ports in Guile........................... 450
23.3.3.25 Tterators In Guilel 451
23.3.4 Guile Auto-loading. ... 453
23.3.5 Guile Modules 453
23.3.5.1 Guile Printing Module 453
23.3.5.2 Guile Types Module.............ot 454

23.4 Auto-loading extensions. 454
23.4.1 The objfile-gdb.extfile.............. 455
23.4.2 The .debug_gdb_scripts section...................... 456

23.4.2.1 Script File Entries.............. oo L. 456
23.4.2.2 Script Text Entries. ...l 457
23.4.3 Which flavor to choose? o L. 457

23.5 Multiple Extension Languagescooiiiiiii.n. 458
23.5.1 Python comes first........ ... 458

23.6 Creating new spellings of existing commands................ 458

24 Command Interpreters..................... 461

ix

X Debugging with GDB

25 GDB Text User Interface.................... 463
25.1 TUL OVEIVIEW .o vve ittt 463
25.2 TUI Key Bindings.............ooiiiiiiiiiiiiiiiiin... 464
25.3 TUI Single Key Mode. ...t 465
25.4 TUl-specific Commands.c..ooiiiiiiiiiiiniena... 465
25.5 TUI Configuration Variables............ 467

26 Using GDB under GNU Emacs............... 469

27 The GpB/MI Interface....................... 471
Function and Purpose. ... 471
Notation and Terminologyo, 471
27.3 &DB/MI General Design..............ooooiiiiiiii 471

27.3.1 Context managementcooeeviinieeninenn.. 472
27.3.1.1 Threads and Frames 472
27.3.1.2 Languagecoouuimimii i 473

27.3.2 Asynchronous command execution and non-stop mode.. 473

27.3.3 Thread groups..........ccouiuiiiiiiiiiiiii i 474

274 @pB/MI Command Syntaxcoooiuiiiiiiiiiiai... 474
27.4.1 GDB/MI Input Syntax...........ooviiiiiiininininnn.. 475
27.4.2 GDB/MI Output Syntaxc.oevevuenineanenenn... 475
27.5 @DpB/MI Compatibility with CLI.....................o.. ... 477
27.6 GDB/MI Development and Front Ends....................... 477
27.7 GDB/MI Output Records ..o, 478
27.7.1 GDB/MI Result Records ... 478
27.7.2 GDB/MI Stream Records 478
27.7.3 GDB/MI Async Records ...t 479
27.7.4 @pB/MI Breakpoint Information................. ... 483
27.7.5 GDB/MI Frame Information 484
27.7.6 GDpB/MI Thread Information 485
27.7.7 &pB/MI Ada Exception Information.................... 485
27.8 Simple Examples of GDB/MI Interaction..................... 485
27.9 &pB/MI Command Description Format...................... 486
27.10 &DpB/MI Breakpoint Commands...............ooieiin.... 487
27.11 &pB/MI Catchpoint Commands...............c.oooooa... 497

27.11.1 Shared Library ¢DB/MI Catchpoints 497

27.11.2 Ada Exception GDB/MI Catchpoints................... 497
27.12 eDB/MI Program Context ..., 499
27.13 @DpB/MI Thread Commands.............covviiiiiiaii... 501
27.14 GpB/MI Ada Tasking Commandsoo.... 503
27.15 GDB/MI Program Execution.......................... 504
27.16 GDB/MI Stack Manipulation Commands.................... 511
27.17 GDB/MI Variable Objectscooiiiiiiiiiiiiiiiia., 516
27.18 @pB/MI Data Manipulation ..., 527
27.19 GpB/MI Tracepoint Commandsooooiia... 536
27.20 GDpB/MI Symbol Query Commands.............oooovaua... 541

27.21 GpB/MI File Commands ..., 542

27.22 GpB/MI Target Manipulation Commands................... 544
27.23 c¢pB/MI File Transfer Commands 548
27.24 Ada Exceptions GDB/MI Commands 549
27.25 GDB/MI Support Commands...........coouiiiiiiiaa.. 549
27.26 Miscellaneous GDB/MI Commandscooouvuen... 551
28 GDB Annotations............................ 559
28.1 What is an Annotation? 559
28.2 The Server Prefix..... ... 560
28.3 Annotation for GDB Input.............l 560
284 BXTOTS 561
28.5 Invalidation Notices......... ..o, 561
28.6 Running the Program............. i 561
28.7 Displaying SOUICe. ...ttt 562
29 JIT Compilation Interface 563
29.1 JIT Declarations.ouuueeiue i 563
29.2 Registering Code ..ot 564
29.3 Unregistering Codeoviiiiiiiiii .. 564
29.4 Custom Debug Info....... i 564
29.4.1 Using JIT Debug Info Readers 565
29.4.2 Writing JIT Debug Info Readers 565

30 In-Process Agent............................ 567
30.1 In-Process Agent Protocol 567
30.1.1 TIPA Protocol Objectscooviiiiiiiiiiiiiiiin. 568
30.1.2 IPA Protocol Commands...........ocooiiiiieiiie . 569

31 Reporting Bugsin GDB..................... 571
31.1 Have You Found a Bug? i i, 571
31.2 How to Report Bugs.........cooviiiiiiiiii i, 571
Appendix A In Memoriam.................... 575
Appendix B Formatting Documentation..... 577
Appendix C Installing GDB.................... 579
C.1 Requirements for Building GDB........... ..., 579
C.2 Invoking the GDB configure Script..............coiiii... 580
C.3 Compiling GDB in Another Directory 581
C.4 Specifying Names for Hosts and Targets 582
C.5 configure Options......... 583
C.6 System-wide configuration and settings 584

C.6.1 Installed System-wide Configuration Scripts............. 584

xi

xii Debugging with GDB

Appendix D Maintenance Commands........ 585

Appendix E GDB Remote Serial Protocol.... 595

E.l OVervieW ... 595
E.2 Packets. 596
E.3 Stop Reply Packets. ..., 607
E.4 General Query Packets o 610
E.5 Architecture-Specific Protocol Details........................ 634
E.5.1 ARM-specific Protocol Details.................... 634
E.5.1.1 ARM Breakpoint Kinds 634

E.5.2 MIPS-specific Protocol Details 634
E.5.2.1 MIPS Register Packet Format 634
E.5.2.2 MIPS Breakpoint Kinds............................ 634

E.6 Tracepoint Packets i i 634
E.6.1 Relocate instruction reply packet........................ 641
E.7 Host I/O Packets. ... 641
E.8 Interruptso 643
E.9 Notification Packets o 644
E.10 Remote Protocol Support for Non-Stop Mode............... 646
E.11 Packet Acknowledgment............... L. 647
E12 Examples ... 647
E.13 File-I/O Remote Protocol Extension........................ 648
E.13.1 File-I/O Overviewoooiiiiiiiiiiiiiiaan... 648
E.13.2 Protocol Basics. ... 648
E.13.3 The F Request Packet 649
E.13.4 The F Reply Packetco it 649
E.13.5 The ‘Ctrl-C" MeSSagec.vviiuiieeniieenaeenn 650
E.13.6 Comsole I/Oo 650
E.13.7 List of Supported Calls............ ... it 650

0 013 1S 650

ClOSE . o 652

TRA . o 652

WTIEE ot 652

ISEEK . o ot 653
TEIAIIIE « .t vttt ettt ettt et e e et e e 653
unlink ... 654
stat/fstat 654
gettimeofday 655

TS E 7 655

SV S I . . e 655
E.13.8 Protocol-specific Representation of Datatypes.......... 656
Integral Datatypes........cooiiii i 656
Pointer Valueso 656
Memory Transfero i 656
struct stat 657
struct timeval. 657
E.13.9 Constants ..o 658

Open Flagso 658

mode_t Values 658
FErrno Values....... ..o i 658
Lseek Flags oo 659
Lamits . o 659
E.13.10 File-I/O Examples.ooovuiiiiiiiiniiinaan.. 659
E.14 Library List Format......... i i 659
E.15 Library List Format for SVR4 Targets...................... 660
E.16 Memory Map Format............, 661
E.17 Thread List Format i 662
E.18 Traceframe Info Formato .. 662
E.19 Branch Trace Format................... . .. i .. 663
E.20 Branch Trace Configuration Format 664

Appendix F The GDB Agent Expression

Mechanism 665
F.1 General Bytecode Designo, 665
F.2 Bytecode Descriptions ..., 667
F.3 Using Agent EXpressions.cooiiiiiiiiiaiiann.n. 672
F.4 Varying Target Capabilities........... ..., 673
F.5 Rationale....... 673

Appendix G Target Descriptions............. 677
G.1 Retrieving Descriptions. ..., 677
G.2 Target Description Format 677

G.2.1 IncluSionooi 678

G.2.2 Architecture..........c.oiviiiieiiii i 678

G.2.3 OS ABIL ... 679

G.2.4 Compatible Architecture............. 679

G.2.5 Features........cooiiiiiiiiiiii e 679

G.2.6 DYPeS e et 679

G.2.7 Registers . ..o 680
G.3 Predefined Target Typesooviiiiiiiiiiiii i, 681
G.4 Enum Target Types.....co.ooiuiiiii i 682
G.5 Standard Target Features...............cocoiiiiiiiiiis, 682

G.5.1 AArch64 Features..........cooiiiiiii i 683

G.5.2 ARC Features..........cooiiiiiiiii i, 683

G.5.3 ARM Features ..., 684

G.5.4 1386 Features........c.ooviiiiiiiiiiiiiiii e 684

G.5.5 MicroBlaze Features.................coooiiiiiia. 685

G.5.6 MIPS Features..........oovuuiiiniieiiiiiiniiiean 685

G.5.7 M6E8K Features.covuuiiiiiiii i, 686

G.5.8 NDS32 Features.........ooiuiiiiiiiiiiiiin.. 686

G.5.9 NiosII Featurescooviiiiiiiiiiiiiiiiieeaan.. 686

G.5.10 PowerPC Features.............cooviiiiiiiiiiiinn... 686

G.5.11 S/390 and System z Features.......................... 687

G.5.12 Sparc Featuresccoiiiiiiiiiiiiiinaannn. 687

G.5.13 TMS320C6x Features.ovuueie i 688

xiii

xiv Debugging with GDB

Appendix H Operating System Information

... 689
H.1 Process list........c e 689
Appendix I Trace File Format............... 691
Appendix J .gdb_index section format....... 693
Appendix K Manual pages.................... 697
Appendix L GNU GENERAL PUBLIC
LICENSE..............., 705
Appendix M GNU Free Documentation License
... 717
Concept Index.................. 725

Command, Variable, and Function Index...... 739

Summary of GDB 1

Summary of GDB

The purpose of a debugger such as GDB is to allow you to see what is going on “inside”
another program while it executes—or what another program was doing at the moment it
crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:
e Start your program, specifying anything that might affect its behavior.
e Make your program stop on specified conditions.
e Examine what has happened, when your program has stopped.

e Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another.

You can use GDB to debug programs written in C and C++. For more information, see
Section 15.4 [Supported Languages], page 195. For more information, see Section 15.4.1 [C
and C++|, page 195.

Support for D is partial. For information on D, see Section 15.4.2 [D], page 201.

Support for Modula-2 is partial. For information on Modula-2, see Section 15.4.9
[Modula-2], page 205.

Support for OpenCL C is partial. For information on OpenCL C, see Section 15.4.5
[OpenCL CJ, page 203.

Debugging Pascal programs which use sets, subranges, file variables, or nested functions
does not currently work. GDB does not support entering expressions, printing values, or
similar features using Pascal syntax.

GDB can be used to debug programs written in Fortran, although it may be necessary
to refer to some variables with a trailing underscore.

GDB can be used to debug programs written in Objective-C, using either the Ap-
ple/NeXT or the GNU Objective-C runtime.

Free Software

GDB is free software, protected by the GNU General Public License (GPL). The GPL gives
you the freedom to copy or adapt a licensed program—but every person getting a copy also
gets with it the freedom to modify that copy (which means that they must get access to the
source code), and the freedom to distribute further copies. Typical software companies use
copyrights to limit your freedoms; the Free Software Foundation uses the GPL to preserve
these freedoms.

Fundamentally, the General Public License is a license which says that you have these
freedoms and that you cannot take these freedoms away from anyone else.

Free Software Needs Free Documentation

The biggest deficiency in the free software community today is not in the software—it is the
lack of good free documentation that we can include with the free software. Many of our
most important programs do not come with free reference manuals and free introductory

2 Debugging with GDB

texts. Documentation is an essential part of any software package; when an important free
software package does not come with a free manual and a free tutorial, that is a major gap.
We have many such gaps today.

Consider Perl, for instance. The tutorial manuals that people normally use are non-free.
How did this come about? Because the authors of those manuals published them with
restrictive terms—no copying, no modification, source files not available—which exclude
them from the free software world.

That wasn’t the first time this sort of thing happened, and it was far from the last.
Many times we have heard a GNU user eagerly describe a manual that he is writing, his
intended contribution to the community, only to learn that he had ruined everything by
signing a publication contract to make it non-free.

Free documentation, like free software, is a matter of freedom, not price. The problem
with the non-free manual is not that publishers charge a price for printed copies—that in
itself is fine. (The Free Software Foundation sells printed copies of manuals, too.) The
problem is the restrictions on the use of the manual. Free manuals are available in source
code form, and give you permission to copy and modify. Non-free manuals do not allow
this.

The criteria of freedom for a free manual are roughly the same as for free software.
Redistribution (including the normal kinds of commercial redistribution) must be permitted,
so that the manual can accompany every copy of the program, both on-line and on paper.

Permission for modification of the technical content is crucial too. When people mod-
ify the software, adding or changing features, if they are conscientious they will change
the manual too—so they can provide accurate and clear documentation for the modified
program. A manual that leaves you no choice but to write a new manual to document a
changed version of the program is not really available to our community.

Some kinds of limits on the way modification is handled are acceptable. For example,
requirements to preserve the original author’s copyright notice, the distribution terms, or
the list of authors, are ok. It is also no problem to require modified versions to include
notice that they were modified. Even entire sections that may not be deleted or changed
are acceptable, as long as they deal with nontechnical topics (like this one). These kinds of
restrictions are acceptable because they don’t obstruct the community’s normal use of the
manual.

However, it must be possible to modify all the technical content of the manual, and then
distribute the result in all the usual media, through all the usual channels. Otherwise, the
restrictions obstruct the use of the manual, it is not free, and we need another manual to
replace it.

Please spread the word about this issue. Our community continues to lose manuals
to proprietary publishing. If we spread the word that free software needs free reference
manuals and free tutorials, perhaps the next person who wants to contribute by writing
documentation will realize, before it is too late, that only free manuals contribute to the
free software community.

If you are writing documentation, please insist on publishing it under the GNU Free
Documentation License or another free documentation license. Remember that this deci-
sion requires your approval—you don’t have to let the publisher decide. Some commercial
publishers will use a free license if you insist, but they will not propose the option; it is up

Summary of GDB 3

to you to raise the issue and say firmly that this is what you want. If the publisher you
are dealing with refuses, please try other publishers. If you're not sure whether a proposed
license is free, write to licensing@gnu.org.

You can encourage commercial publishers to sell more free, copylefted manuals and
tutorials by buying them, and particularly by buying copies from the publishers that paid
for their writing or for major improvements. Meanwhile, try to avoid buying non-free
documentation at all. Check the distribution terms of a manual before you buy it, and
insist that whoever seeks your business must respect your freedom. Check the history of
the book, and try to reward the publishers that have paid or pay the authors to work on it.

The Free Software Foundation maintains a list of free documentation published by other
publishers, at http://www.fsf.org/doc/other-free-books.html.

Contributors to GDB

Richard Stallman was the original author of GDB, and of many other GNU programs. Many
others have contributed to its development. This section attempts to credit major con-
tributors. One of the virtues of free software is that everyone is free to contribute to it;
with regret, we cannot actually acknowledge everyone here. The file ChangeLog in the GDB
distribution approximates a blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.

Plea: Additions to this section are particularly welcome. If you or your friends
(or enemies, to be evenhanded) have been unfairly omitted from this list, we
would like to add your names!

So that they may not regard their many labors as thankless, we particularly thank those
who shepherded GDB through major releases: Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0,
5.3, 5.2, 5.1 and 5.0); Jim Blandy (release 4.18); Jason Molenda (release 4.17); Stan Shebs
(release 4.14); Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9); Stu Grossman
and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4); John Gilmore (releases 4.3, 4.2, 4.1,
4.0, and 3.9); Jim Kingdon (releases 3.5, 3.4, and 3.3); and Randy Smith (releases 3.2, 3.1,
and 3.0).

Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and
Richard Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the GNU C++ support in GDB, with significant
additional contributions from Per Bothner and Daniel Berlin. James Clark wrote the aNU
C++ demangler. Early work on C++ was by Peter TerMaat (who also did much general
update work leading to release 3.0).

GDB uses the BFD subroutine library to examine multiple object-file formats; BFD was
a joint project of David V. Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John
Gilmore.

David Johnson wrote the original COFF support; Pace Willison did the original support
for encapsulated COFF.

Brent Benson of Harris Computer Systems contributed DWARF 2 support.

Adam de Boor and Bradley Davis contributed the ISI Optimum V support. Per Bothner,
Noboyuki Hikichi, and Alessandro Forin contributed MIPS support. Jean-Daniel Fekete
contributed Sun 386i support. Chris Hanson improved the HP9000 support. Noboyuki

mailto:licensing@gnu.org
http://www.fsf.org/doc/other-free-books.html

4 Debugging with GDB

Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support. David Johnson con-
tributed Encore Umax support. Jyrki Kuoppala contributed Altos 3068 support. Jeff
Law contributed HP PA and SOM support. Keith Packard contributed NS32K support.
Doug Rabson contributed Acorn Risc Machine support. Bob Rusk contributed Harris
Nighthawk CX-UX support. Chris Smith contributed Convex support (and Fortran de-
bugging). Jonathan Stone contributed Pyramid support. Michael Tiemann contributed
SPARC support. Tim Tucker contributed support for the Gould NP1 and Gould Powern-
ode. Pace Willison contributed Intel 386 support. Jay Vosburgh contributed Symmetry
support. Marko Mlinar contributed OpenRISC 1000 support.

Andreas Schwab contributed M68K GNU/Linux support.

Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.

Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about several
machine instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop remote
debugging. Intel Corporation, Wind River Systems, AMD, and ARM contributed remote
debugging modules for the 1960, VxWorks, A29K UDI, and RDI targets, respectively.

Brian Fox is the author of the readline libraries providing command-line editing and
command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code, the Modula-2 sup-
port, and contributed the Languages chapter of this manual.

Fred Fish wrote most of the support for Unix System Vrd4. He also enhanced the
command-completion support to cover C++ overloaded symbols.

Hitachi America (now Renesas America), Ltd. sponsored the support for H8/300,
H8/500, and Super-H processors.

NEC sponsored the support for the v850, Vrdxxx, and VrHxxx processors.

Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R /D proces-
sors.

Toshiba sponsored the support for the TX39 Mips processor.

Matsushita sponsored the support for the MN10200 and MN10300 processors.
Fujitsu sponsored the support for SPARClite and FR30 processors.

Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware watchpoints.
Michael Snyder added support for tracepoints.

Stu Grossman wrote gdbserver.

Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made nearly innumerable
bug fixes and cleanups throughout GDB.

The following people at the Hewlett-Packard Company contributed support for the PA-
RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0 (narrow mode), HP’s implementation
of kernel threads, HP’s aC++ compiler, and the Text User Interface (nee Terminal User
Interface): Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann, Satish
Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase provided HP-specific
information in this manual.

DJ Delorie ported GDB to MS-DOS, for the DJGPP project. Robert Hoehne made
significant contributions to the DJGPP port.

Summary of GDB 5

Cygnus Solutions has sponsored GDB maintenance and much of its development since
1991. Cygnus engineers who have worked on GDB fulltime include Mark Alexander, Jim
Blandy, Per Bothner, Kevin Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin
Hunt, Jim Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek Radouch, Keith Seitz,
Stan Shebs, David Taylor, and Elena Zannoni. In addition, Dave Brolley, lan Carmichael,
Steve Chamberlain, Nick Clifton, JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank
Figler, Doug Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff Holcomb,
Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner, Jason Merrill, Catherine
Moore, Drew Moseley, Ken Raeburn, Gavin Romig-Koch, Rob Savoye, Jamie Smith, Mike
Stump, Ian Taylor, Angela Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim
Wilson, and David Zuhn have made contributions both large and small.

Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for Cygnus Solu-
tions, implemented the original GDB/MI interface.

Jim Blandy added support for preprocessor macros, while working for Red Hat.

Andrew Cagney designed GDB’s architecture vector. Many people including Andrew
Cagney, Stephane Carrez, Randolph Chung, Nick Duffek, Richard Henderson, Mark Ket-
tenis, Grace Sainsbury, Kei Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab,
Jason Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped with the
migration of old architectures to this new framework.

Andrew Cagney completely re-designed and re-implemented GDB’s unwinder framework,
this consisting of a fresh new design featuring frame IDs, independent frame sniffers, and
the sentinel frame. Mark Kettenis implemented the DWARF 2 unwinder, Jeff Johnston the
libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and trad unwinders.
The architecture-specific changes, each involving a complete rewrite of the architecture’s
frame code, were carried out by Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew
Cagney, Stephane Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei Sakamoto, Yoshinori
Sato, Michael Snyder, Corinna Vinschen, and Ulrich Weigand.

Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from Tensilica, Inc.
contributed support for Xtensa processors. Others who have worked on the Xtensa port of
GDB in the past include Steve Tjiang, John Newlin, and Scott Foehner.

Michael Eager and staff of Xilinx, Inc., contributed support for the Xilinx MicroBlaze
architecture.

Initial support for the FreeBSD/mips target and native configuration was developed
by SRI International and the University of Cambridge Computer Laboratory under
DARPA/AFRL contract FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH

research programme.

Chapter 1: A Sample GDB Session 7

1 A Sample GDB Session

You can use this manual at your leisure to read all about GDB. However, a handful of
commands are enough to get started using the debugger. This chapter illustrates those
commands.

In this sample session, we emphasize user input like this: input, to make it easier to pick
out from the surrounding output.

One of the preliminary versions of GNU m4 (a generic macro processor) exhibits the
following bug: sometimes, when we change its quote strings from the default, the commands
used to capture one macro definition within another stop working. In the following short m4
session, we define a macro foo which expands to 0000; we then use the m4 built-in defn to
define bar as the same thing. However, when we change the open quote string to <QUOTE>
and the close quote string to <UNQUOTE>, the same procedure fails to define a new synonym
baz:

$ cd gnu/m4

$./m4
define(fo0,0000)

foo
0000
define(bar,defn(‘foo’))

bar
0000
changequote(<QUOTE>,<UNQUOTE>)

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz

Ctrl-d

m4: End of input: O: fatal error: EOF in string

Let us use GDB to try to see what is going on.
$ gdb m4
GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.
There is absolutely no warranty for GDB; type "show warranty"
for details.

GDB Red Hat Enterprise Linux 8.0.1-36.el7, Copyright 1999 Free Software Foundation, Inc...

(gdb)
GDB reads only enough symbol data to know where to find the rest when needed; as a result,
the first prompt comes up very quickly. We now tell GDB to use a narrower display width
than usual, so that examples fit in this manual.

(gdb) set width 70
We need to see how the m4 built-in changequote works. Having looked at the source, we
know the relevant subroutine is m4_changequote, so we set a breakpoint there with the
GDB break command.

(gdb) break m4_changequote

Breakpoint 1 at 0x62f4: file builtin.c, line 879.
Using the run command, we start m4 running under GDB control; as long as control does
not reach the m4_changequote subroutine, the program runs as usual:

8 Debugging with GDB

(gdb) run
Starting program: /work/Editorial/gdb/gnu/m4/mé
define(f00,0000)

foo
0000

To trigger the breakpoint, we call changequote. GDB suspends execution of m4, displaying
information about the context where it stops.

changequote(<QUOTE>,<UNQUOTE>)

Breakpoint 1, mé4_changequote (argc=3, argv=0x33c70)
at builtin.c:879
879 if (bad_argc(TOKEN_DATA_TEXT (argv[0]),argc,1,3))

Now we use the command n (next) to advance execution to the next line of the current
function.

(gdb) n

882 set_quotes((argc >= 2) 7 TOKEN_DATA_TEXT(argv([1])\

: nil,

set_quotes looks like a promising subroutine. We can go into it by using the command s
(step) instead of next. step goes to the next line to be executed in any subroutine, so it
steps into set_quotes.

(gdb) s

set_quotes (1gq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530
530 if (lquote !'= def_lquote)

The display that shows the subroutine where m4 is now suspended (and its arguments) is
called a stack frame display. It shows a summary of the stack. We can use the backtrace
command (which can also be spelled bt), to see where we are in the stack as a whole: the
backtrace command displays a stack frame for each active subroutine.

(gdb) bt

#0 set_quotes (1q=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
at input.c:530

#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
at builtin.c:882

#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242

#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
at macro.c:71

#4 0x79dc in expand_input () at macro.c:40

#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195

We step through a few more lines to see what happens. The first two times, we can use ‘s’;
the next two times we use n to avoid falling into the xstrdup subroutine.

(gdb) s

0x3bbc 532 if (rquote != def_rquote)

(gdb) s

0x3b80 535 lquote = (1q == nil || *1q == ’\0’) 7 \

def_lquote : xstrdup(lq);

(gdb) n

536 rquote = (rq == nil || *rq == ’\0’) 7 def_rquote\
¢ xstrdup(rq);

(gdb) n

538 len_lquote = strlen(rquote);

Chapter 1: A Sample GDB Session 9

The last line displayed looks a little odd; we can examine the variables 1quote and rquote
to see if they are in fact the new left and right quotes we specified. We use the command
p (print) to see their values.

(gdb) p lquote

$1 = 0x35d40 "<QUOTE>"

(gdb) p rquote

$2 = 0x35d50 "<UNQUOTE>"
lquote and rquote are indeed the new left and right quotes. To look at some context, we
can display ten lines of source surrounding the current line with the 1 (1ist) command.

(gdb) 1

533 xfree(rquote) ;

534

535 lquote = (1g == nil || *1q == ’\0’) ? def_lquote\
: xstrdup (1q);

536 rquote = (rq == nil || *rq == ’\0’) 7 def_rquote\
: xstrdup (rq);

537

538 len_lquote = strlen(rquote);

539 len_rquote = strlen(lquote);

540 }

541

542 void

Let us step past the two lines that set len_lquote and len_rquote, and then examine the
values of those variables.

(gdb) n

539 len_rquote = strlen(lquote);

(gdb) n

540 }

(gdb) p len_lquote

$3 =9

(gdb) p len_rquote

$4 =7

That certainly looks wrong, assuming len_lquote and len_rquote are meant to be the
lengths of 1quote and rquote respectively. We can set them to better values using the p
command, since it can print the value of any expression—and that expression can include
subroutine calls and assignments.

(gdb) p len_lquote=strlen(lquote)

$6 =7
(gdb) p len_rquote=strlen(rquote)
$6 =9

Is that enough to fix the problem of using the new quotes with the m4 built-in defn? We can
allow m4 to continue executing with the ¢ (continue) command, and then try the example
that caused trouble initially:

(gdb) ¢
Continuing.

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz
0000

10 Debugging with GDB

Success! The new quotes now work just as well as the default ones. The problem seems to
have been just the two typos defining the wrong lengths. We allow m4 exit by giving it an
EOF as input:

Ctrl-d

Program exited normally.
The message ‘Program exited normally.’ is from GDB; it indicates m4 has finished execut-
ing. We can end our GDB session with the GDB quit command.

(gdb) quit

Chapter 2: Getting In and Out of GDB 11

2 Getting In and Out of GDB

This chapter discusses how to start GDB, and how to get out of it. The essentials are:
e type ‘gdb’ to start GDB.
e type quit or Ctrl-d to exit.

2.1 Invoking GDB

Invoke GDB by running the program gdb. Once started, GDB reads commands from the
terminal until you tell it to exit.

You can also run gdb with a variety of arguments and options, to specify more of your
debugging environment at the outset.

The command-line options described here are designed to cover a variety of situations;
in some environments, some of these options may effectively be unavailable.

The most usual way to start GDB is with one argument, specifying an executable program:

gdb program
You can also start with both an executable program and a core file specified:
gdb program core

You can, instead, specify a process ID as a second argument, if you want to debug a
running process:

gdb program 1234
would attach GDB to process 1234 (unless you also have a file named 1234; GDB does check
for a core file first).

Taking advantage of the second command-line argument requires a fairly complete op-
erating system; when you use GDB as a remote debugger attached to a bare board, there
may not be any notion of “process”, and there is often no way to get a core dump. GDB
will warn you if it is unable to attach or to read core dumps.

You can optionally have gdb pass any arguments after the executable file to the inferior
using —-—args. This option stops option processing.

gdb --args gcc -02 -c foo.c

This will cause gdb to debug gcc, and to set gcc’s command-line arguments (see
Section 4.3 [Arguments|, page 30) to ‘-02 -c foo.c’.

You can run gdb without printing the front material, which describes GDB’s
non-warranty, by specifying --silent (or -q/--quiet):

gdb --silent
You can further control how GDB starts up by using command-line options. GDB itself can
remind you of the options available.
Type

gdb -help
to display all available options and briefly describe their use (‘gdb -h’ is a shorter equiva-
lent).

All options and command line arguments you give are processed in sequential order. The
order makes a difference when the ‘-x’ option is used.

12 Debugging with GDB

2.1.1 Choosing Files

When GDB starts, it reads any arguments other than options as specifying an executable
file and core file (or process ID). This is the same as if the arguments were specified by the
‘~se’ and ‘-c’ (or ‘-p’) options respectively. (GDB reads the first argument that does not
have an associated option flag as equivalent to the ‘-se’ option followed by that argument;
and the second argument that does not have an associated option flag, if any, as equivalent
to the ‘=c’/‘-p’ option followed by that argument.) If the second argument begins with a
decimal digit, GDB will first attempt to attach to it as a process, and if that fails, attempt
to open it as a corefile. If you have a corefile whose name begins with a digit, you can
prevent GDB from treating it as a pid by prefixing it with ./, e.g. ./12345.

If GDB has not been configured to included core file support, such as for most embedded
targets, then it will complain about a second argument and ignore it.

Many options have both long and short forms; both are shown in the following list. GDB
also recognizes the long forms if you truncate them, so long as enough of the option is
present to be unambiguous. (If you prefer, you can flag option arguments with ‘--’ rather
than ‘=’ though we illustrate the more usual convention.)

—symbols file
-s file Read symbol table from file file.

-exec file
-e file Use file file as the executable file to execute when appropriate, and for examining
pure data in conjunction with a core dump.

-se file Read symbol table from file file and use it as the executable file.

-core file
-c file Use file file as a core dump to examine.

-pid number
-p number Connect to process ID number, as with the attach command.

—-command file
-x file Execute commands from file file. The contents of this file is evaluated exactly
as the source command would. See Section 23.1.3 [Command files|, page 326.

-eval-command command
-ex command
Execute a single GDB command.

This option may be used multiple times to call multiple commands. It may also
be interleaved with ‘~command’ as required.
gdb -ex ’target sim’ -ex ’load’ \
-x setbreakpoints -ex ’run’ a.out
-init-command file
-ix file Execute commands from file file before loading the inferior (but after loading
gdbinit files). See Section 2.1.3 [Startup|, page 16.

-init-eval-command command

—-iex command
Execute a single GDB command before loading the inferior (but after loading
gdbinit files). See Section 2.1.3 [Startup|, page 16.

Chapter 2: Getting In and Out of GDB 13

—-directory directory
-d directory

-r

Add directory to the path to search for source and script files.

-readnow Read each symbol file’s entire symbol table immediately, rather than the default,

which is to read it incrementally as it is needed. This makes startup slower,
but makes future operations faster.

—-readnever

Do not read each symbol file’s symbolic debug information. This makes startup
faster but at the expense of not being able to perform symbolic debugging.

2.1.2 Choosing Modes

You can run GDB in various alternative modes—for example, in batch mode or quiet mode.

-nx
-n

-quiet
-silent

-batch

Do not execute commands found in any initialization file. There are three init
files, loaded in the following order:

system.gdbinit
This is the system-wide init file. Its location is specified with the -
-with-system-gdbinit configure option (see Section C.6 [System-
wide configuration|, page 584). It is loaded first when GDB starts,
before command line options have been processed.

~/.gdbinit
This is the init file in your home directory. It is loaded next, af-
ter system.gdbinit, and before command options have been pro-
cessed.

./.gdbinit
This is the init file in the current directory. It is loaded last, af-
ter command line options other than -x and -ex have been pro-
cessed. Command line options -x and -ex are processed last, after
./ .gdbinit has been loaded.

For further documentation on startup processing, See Section 2.1.3 [Startup],
page 16. For documentation on how to write command files, See Section 23.1.3
[Command Files], page 326.

Do not execute commands found in ~/.gdbinit, the init file in your home
directory. See Section 2.1.3 [Startup|, page 16.

“Quiet”. Do not print the introductory and copyright messages. These mes-
sages are also suppressed in batch mode.

Run in batch mode. Exit with status 0 after processing all the command files
specified with ‘-x’ (and all commands from initialization files, if not inhibited
with ‘-n’). Exit with nonzero status if an error occurs in executing the GDB

14 Debugging with GDB

commands in the command files. Batch mode also disables pagination, sets un-
limited terminal width and height see Section 22.4 [Screen Size|, page 307, and
acts as if set confirm off were in effect (see Section 22.8 [Messages/Warnings|,
page 315).

Batch mode may be useful for running GDB as a filter, for example to download
and run a program on another computer; in order to make this more useful, the
message

Program exited normally.

(which is ordinarily issued whenever a program running under GDB control
terminates) is not issued when running in batch mode.

-batch-silent
Run in batch mode exactly like ‘-batch’, but totally silently. All GDB output to
stdout is prevented (stderr is unaffected). This is much quieter than ‘-silent’
and would be useless for an interactive session.

This is particularly useful when using targets that give ‘Loading section’ mes-
sages, for example.

Note that targets that give their output via GDB, as opposed to writing directly
to stdout, will also be made silent.

-return-child-result
The return code from GDB will be the return code from the child process (the
process being debugged), with the following exceptions:

e GDB exits abnormally. E.g., due to an incorrect argument or an internal
error. In this case the exit code is the same as it would have been without
‘-return-child-result’.

e The user quits with an explicit value. E.g., ‘quit 1’.

e The child process never runs, or is not allowed to terminate, in which case
the exit code will be -1.

This option is useful in conjunction with ‘-batch’ or ‘-batch-silent’, when
GDB is being used as a remote program loader or simulator interface.

-nowindows

-nw “No windows”. If GDB comes with a graphical user interface (GUI) built in,
then this option tells GDB to only use the command-line interface. If no GUI is
available, this option has no effect.

-windows
-w If ¢DB includes a GUI, then this option requires it to be used if possible.

-cd directory
Run GDB using directory as its working directory, instead of the current direc-
tory.

—-data-directory directory

-D directory
Run ¢DB using directory as its data directory. The data directory is where GDB
searches for its auxiliary files. See Section 18.7 [Data Files|, page 256.

Chapter 2: Getting In and Out of GDB 15

-fullname

-f GNU Emacs sets this option when it runs GDB as a subprocess. It tells GDB to
output the full file name and line number in a standard, recognizable fashion
each time a stack frame is displayed (which includes each time your program
stops). This recognizable format looks like two ‘\032’ characters, followed by
the file name, line number and character position separated by colons, and a
newline. The Emacs-to-GDB interface program uses the two ‘\032’ characters
as a signal to display the source code for the frame.

—annotate level

This option sets the annotation level inside GDB. Its effect is identical to using
‘set annotate level’ (see Chapter 28 [Annotations|, page 559). The annota-
tion level controls how much information GDB prints together with its prompt,
values of expressions, source lines, and other types of output. Level 0 is the
normal, level 1 is for use when GDB is run as a subprocess of GNU Emacs, level
3 is the maximum annotation suitable for programs that control GDB, and level
2 has been deprecated.

The annotation mechanism has largely been superseded by GDB/MI (see
Chapter 27 [GDB/MI], page 471).

--args Change interpretation of command line so that arguments following the exe-
cutable file are passed as command line arguments to the inferior. This option
stops option processing.

-baud bps
-b bps Set the line speed (baud rate or bits per second) of any serial interface used by
GDB for remote debugging.

-1 timeout
Set the timeout (in seconds) of any communication used by GDB for remote
debugging.

-tty device

-t device Run using device for your program’s standard input and output.

-P

—--python Change interpretation of command line so that the argument immediately fol-
lowing this switch is taken to be the name of a Python script file. This option
stops option processing; subsequent options are passed to Python as sys.argv.
This option is only available if Python scripting support was enabled when GDB
was configured.

-tui Activate the Text User Interface when starting. The Text User Interface man-
ages several text windows on the terminal, showing source, assembly, regis-
ters and GDB command outputs (see Chapter 25 [GDB Text User Interface],
page 463). Do not use this option if you run ¢DB from Emacs (see Chapter 26
[Using GDB under GNU Emacs]|, page 469).

-interpreter interp
Use the interpreter interp for interface with the controlling program or device.
This option is meant to be set by programs which communicate with GDB using
it as a back end. See Chapter 24 [Command Interpreters], page 461.

16 Debugging with GDB

‘~—interpreter=mi’ (or ‘--interpreter=mi2’) causes GDB to use the GDB/MI
interface (see Chapter 27 [The ¢DB/MI Interface|, page 471) included since GDB
version 6.0. The previous GDB/MI interface, included in GDB version 5.3 and
selected with ‘--interpreter=mil’, is deprecated. Earlier GDB/MI interfaces
are no longer supported.

-write Open the executable and core files for both reading and writing. This is equiv-
alent to the ‘set write on’ command inside GDB (see Section 17.6 [Patching],
page 234).

-statistics

This option causes GDB to print statistics about time and memory usage after
it completes each command and returns to the prompt.

-version This option causes GDB to print its version number and no-warranty blurb, and
exit.

-configuration
This option causes GDB to print details about its build-time configuration pa-
rameters, and then exit. These details can be important when reporting GDB
bugs (see Chapter 31 [GDB Bugs|, page 571).

2.1.3 What GDB Does During Startup

Here’s the description of what ¢DB does during session startup:

1. Sets up the command interpreter as specified by the command line (see Section 2.1.2
[Mode Options|, page 13).

2. Reads the system-wide init file (if -~—~with-system-gdbinit was used when building
GDB; see Section C.6 [System-wide configuration and settings|, page 584) and executes
all the commands in that file.

3. Reads the init file (if any) in your home directory! and executes all the commands in
that file.

4. Executes commands and command files specified by the ‘-iex’ and ‘-ix’ options in
their specified order. Usually you should use the ‘-ex’ and ‘-x’ options instead, but
this way you can apply settings before GDB init files get executed and before inferior
gets loaded.

5. Processes command line options and operands.

6. Reads and executes the commands from init file (if any) in the current working directory
as long as ‘set auto-load local-gdbinit’is set to ‘on’ (see Section 22.7.1 [Init File in
the Current Directory|, page 312). This is only done if the current directory is different
from your home directory. Thus, you can have more than one init file, one generic in
your home directory, and another, specific to the program you are debugging, in the
directory where you invoke GDB.

7. If the command line specified a program to debug, or a process to attach to, or a core
file, GDB loads any auto-loaded scripts provided for the program or for its loaded shared
libraries. See Section 22.7 [Auto-loading], page 310.

9

1 Oon DOS /Windows systems, the home directory is the one pointed to by the HOME environment variable.

Chapter 2: Getting In and Out of GDB 17

If you wish to disable the auto-loading during startup, you must do something like the
following;:

$ gdb -iex "set auto-load python-scripts off" myprogram
Option ‘-ex’ does not work because the auto-loading is then turned off too late.

8. Executes commands and command files specified by the ‘-ex’ and ‘-x’ options in their
specified order. See Section 23.1.3 [Command Files|, page 326, for more details about
GDB command files.

9. Reads the command history recorded in the history file. See Section 22.3 [Command
History|, page 306, for more details about the command history and the files where
GDB records it.

Init files use the same syntax as command files (see Section 23.1.3 [Command Files],
page 326) and are processed by GDB in the same way. The init file in your home directory
can set options (such as ‘set complaints’) that affect subsequent processing of command
line options and operands. Init files are not executed if you use the ‘-nx’ option (see
Section 2.1.2 [Choosing Modes], page 13).

To display the list of init files loaded by gdb at startup, you can use gdb --help.

The GDB init files are normally called .gdbinit. The DJGPP port of GDB uses the name
gdb.ini, due to the limitations of file names imposed by DOS filesystems. The Windows
port of GDB uses the standard name, but if it finds a gdb.ini file in your home directory,
it warns you about that and suggests to rename the file to the standard name.

2.2 Quitting GDB

quit [expression]

q To exit GDB, use the quit command (abbreviated q), or type an end-of-file
character (usually Ctrl-d). If you do not supply expression, GDB will terminate
normally; otherwise it will terminate using the result of expression as the error
code.

An interrupt (often Ctrl-c) does not exit from GDB, but rather terminates the action
of any GDB command that is in progress and returns to GDB command level. It is safe to
type the interrupt character at any time because GDB does not allow it to take effect until
a time when it is safe.

If you have been using GDB to control an attached process or device, you can release
it with the detach command (see Section 4.7 [Debugging an Already-running Process],
page 32).

2.3 Shell Commands

If you need to execute occasional shell commands during your debugging session, there is
no need to leave or suspend GDB; you can just use the shell command.

shell command-string

| command-string
Invoke a standard shell to execute command-string. Note that no space is
needed between ! and command-string. If it exists, the environment variable
SHELL determines which shell to run. Otherwise GDB uses the default shell
(/bin/sh on Unix systems, COMMAND.COM on MS-DOS, etc.).

18 Debugging with GDB

The utility make is often needed in development environments. You do not have to use
the shell command for this purpose in GDB:

make make-args
Execute the make program with the specified arguments. This is equivalent to
‘shell make make-args’.

2.4 Logging Output

You may want to save the output of GDB commands to a file. There are several commands
to control GDB’s logging.

set logging on
Enable logging.

set logging off
Disable logging.

set logging file file
Change the name of the current logfile. The default logfile is gdb. txt.

set logging overwrite [on|off]
By default, DB will append to the logfile. Set overwrite if you want set
logging on to overwrite the logfile instead.

set logging redirect [on|off]
By default, GDB output will go to both the terminal and the logfile. Set
redirect if you want output to go only to the log file.

show logging
Show the current values of the logging settings.

Chapter 3: GbB Commands 19

3 GDB Commands

You can abbreviate a GDB command to the first few letters of the command name, if that
abbreviation is unambiguous; and you can repeat certain GDB commands by typing just
RET. You can also use the TAB key to get GDB to fill out the rest of a word in a command
(or to show you the alternatives available, if there is more than one possibility).

3.1 Command Syntax

A GDB command is a single line of input. There is no limit on how long it can be. It
starts with a command name, which is followed by arguments whose meaning depends on
the command name. For example, the command step accepts an argument which is the
number of times to step, as in ‘step 5. You can also use the step command with no
arguments. Some commands do not allow any arguments.

GDB command names may always be truncated if that abbreviation is unambiguous.
Other possible command abbreviations are listed in the documentation for individual com-
mands. In some cases, even ambiguous abbreviations are allowed; for example, s is specially
defined as equivalent to step even though there are other commands whose names start
with s. You can test abbreviations by using them as arguments to the help command.

A blank line as input to GDB (typing just RET) means to repeat the previous command.
Certain commands (for example, run) will not repeat this way; these are commands whose
unintentional repetition might cause trouble and which you are unlikely to want to repeat.
User-defined commands can disable this feature; see Section 23.1.1 [Define], page 323.

The list and x commands, when you repeat them with RET, construct new arguments
rather than repeating exactly as typed. This permits easy scanning of source or memory.

GDB can also use RET in another way: to partition lengthy output, in a way similar to
the common utility more (see Section 22.4 [Screen Size|, page 307). Since it is easy to press
one RET too many in this situation, GDB disables command repetition after any command
that generates this sort of display.

Any text from a # to the end of the line is a comment; it does nothing. This is useful
mainly in command files (see Section 23.1.3 [Command Files|, page 326).

The Ctrl-o binding is useful for repeating a complex sequence of commands. This
command accepts the current line, like RET, and then fetches the next line relative to the
current line from the history for editing.

3.2 Command Completion

GDB can fill in the rest of a word in a command for you, if there is only one possibility;
it can also show you what the valid possibilities are for the next word in a command, at
any time. This works for GDB commands, GDB subcommands, and the names of symbols
in your program.

Press the TAB key whenever you want GDB to fill out the rest of a word. If there is only
one possibility, GDB fills in the word, and waits for you to finish the command (or press RET
to enter it). For example, if you type

(gdb) info bre TAB
GDB fills in the rest of the word ‘breakpoints’, since that is the only info subcommand
beginning with ‘bre’:

20 Debugging with GDB

(gdb) info breakpoints

You can either press RET at this point, to run the info breakpoints command, or backspace
and enter something else, if ‘breakpoints’ does not look like the command you expected. (If
you were sure you wanted info breakpoints in the first place, you might as well just type
RET immediately after ‘info bre’, to exploit command abbreviations rather than command
completion).

If there is more than one possibility for the next word when you press TAB, GDB sounds a
bell. You can either supply more characters and try again, or just press TAB a second time;
GDB displays all the possible completions for that word. For example, you might want to
set a breakpoint on a subroutine whose name begins with ‘make_’, but when you type b
make_TAB GDB just sounds the bell. Typing TAB again displays all the function names in
your program that begin with those characters, for example:

(gdb) b make_ TAB
GDB sounds bell; press TAB again, to see:

make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list

(gdb) b make_
After displaying the available possibilities, GDB copies your partial input (‘b make_’ in the
example) so you can finish the command.

If you just want to see the list of alternatives in the first place, you can press M-? rather
than pressing TAB twice. M-? means META 7. You can type this either by holding down a
key designated as the META shift on your keyboard (if there is one) while typing ?, or as ESC
followed by 7.

If the number of possible completions is large, GDB will print as much of the list as it
has collected, as well as a message indicating that the list may be truncated.

(gdb) b mTABTAB

main

<... the rest of the possible completions ...>

*xx List may be truncated, max-completions reached. **x*
(gdb) b m

This behavior can be controlled with the following commands:

set max-completions limit

set max-completions unlimited
Set the maximum number of completion candidates. GDB will stop looking for
more completions once it collects this many candidates. This is useful when
completing on things like function names as collecting all the possible candidates
can be time consuming. The default value is 200. A value of zero disables tab-
completion. Note that setting either no limit or a very large limit can make
completion slow.

show max-completions
Show the maximum number of candidates that GDB will collect and show during
completion.

Sometimes the string you need, while logically a “word”, may contain parentheses or
other characters that GDB normally excludes from its notion of a word. To permit word

Chapter 3: abB Commands 21

completion to work in this situation, you may enclose words in ’ (single quote marks) in
GDB commands.

The most likely situation where you might need this is in typing the name of a C++
function. This is because C++ allows function overloading (multiple definitions of the same
function, distinguished by argument type). For example, when you want to set a breakpoint
you may need to distinguish whether you mean the version of name that takes an int
parameter, name (int), or the version that takes a float parameter, name (float). To use
the word-completion facilities in this situation, type a single quote ’ at the beginning of the
function name. This alerts GDB that it may need to consider more information than usual
when you press TAB or M-? to request word completion:

(gdb) b ’bubble(M-7
bubble (double,double) bubble(int,int)
(gdb) b ’bubble(

In some cases, GDB can tell that completing a name requires using quotes. When this
happens, GDB inserts the quote for you (while completing as much as it can) if you do not
type the quote in the first place:

(gdb) b bub TAB
GDB alters your input line to the following, and rings a bell:

(gdb) b ’bubble(
In general, GDB can tell that a quote is needed (and inserts it) if you have not yet started
typing the argument list when you ask for completion on an overloaded symbol.

For more information about overloaded functions, see Section 15.4.1.3 [C++ Expressions],
page 198. You can use the command set overload-resolution off to disable overload
resolution; see Section 15.4.1.7 [GDB Features for C++|, page 199.

When completing in an expression which looks up a field in a structure, GDB also tries!
to limit completions to the field names available in the type of the left-hand-side:
(gdb) p gdb_stdout.M-?

magic to_fputs to_rewind

to_data to_isatty to_write

to_delete to_put to_write_async_safe
to_flush to_read

This is because the gdb_stdout is a variable of the type struct ui_file that is defined in
GDB sources as follows:

struct ui_file

{
int *magic;
ui_file_flush_ftype *to_flush;
ui_file_write_ftype *to_write;
ui_file_write_async_safe_ftype *to_write_async_safe;
ui_file_fputs_ftype *to_fputs;
ui_file_read_ftype *to_read;
ui_file_delete_ftype *to_delete;
ui_file_isatty_ftype *to_isatty;
ui_file_rewind_ftype *to_rewind;
ui_file_put_ftype *to_put;
void *to_data;

}

! The completer can be confused by certain kinds of invalid expressions. Also, it only examines the static
type of the expression, not the dynamic type.

22

Debugging with GDB

3.3 Getting Help

You can always ask GDB itself for information on its commands, using the command help.

help

h You can use help (abbreviated h) with no arguments to display a short list of
named classes of commands:

help class

(gdb) help
List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points

data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without
stopping the program

user-defined -- User-defined commands

Type "help" followed by a class name for a list of
commands in that class.

Type "help" followed by command name for full
documentation.

Command name abbreviations are allowed if unambiguous.

(gdb)

Using one of the general help classes as an argument, you can get a list of the
individual commands in that class. For example, here is the help display for
the class status:

help command

(gdb) help status
Status inquiries.

List of commands:

info -- Generic command for showing things
about the program being debugged
show -- Generic command for showing things

about the debugger

Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.

(gdb)

With a command name as help argument, GDB displays a short paragraph on
how to use that command.

Chapter 3: GbB Commands 23

apropos args

The apropos command searches through all of the GDB commands, and their
documentation, for the regular expression specified in args. It prints out all
matches found. For example:

apropos alias

results in:
alias -- Define a new command that is an alias of an existing command
aliases -- Aliases of other commands
d -- Delete some breakpoints or auto-display expressions
del -- Delete some breakpoints or auto-display expressions
delete -- Delete some breakpoints or auto-display expressions

complete args

The complete args command lists all the possible completions for the begin-
ning of a command. Use args to specify the beginning of the command you
want completed. For example:

complete i

results in:
if
ignore
info
inspect

This is intended for use by GNU Emacs.

In addition to help, you can use the GDB commands info and show to inquire about
the state of your program, or the state of GDB itself. Each command supports many topics
of inquiry; this manual introduces each of them in the appropriate context. The listings
under info and under show in the Command, Variable, and Function Index point to all the
sub-commands. See [Command and Variable Index], page 739.

info

set

show

This command (abbreviated i) is for describing the state of your program. For
example, you can show the arguments passed to a function with info args,
list the registers currently in use with info registers, or list the breakpoints
you have set with info breakpoints. You can get a complete list of the info
sub-commands with help info.

You can assign the result of an expression to an environment variable with set.
For example, you can set the GDB prompt to a $-sign with set prompt $.

In contrast to info, show is for describing the state of GDB itself. You can
change most of the things you can show, by using the related command set;
for example, you can control what number system is used for displays with set
radix, or simply inquire which is currently in use with show radix.

To display all the settable parameters and their current values, you can use
show with no arguments; you may also use info set. Both commands produce
the same display.

Here are several miscellaneous show subcommands, all of which are exceptional in lacking
corresponding set commands:

24 Debugging with GDB

show version

Show what version of GDB is running. You should include this information in
GDB bug-reports. If multiple versions of GDB are in use at your site, you may
need to determine which version of GDB you are running; as GDB evolves, new
commands are introduced, and old ones may wither away. Also, many system
vendors ship variant versions of GDB, and there are variant versions of GDB in
GNU/Linux distributions as well. The version number is the same as the one
announced when you start GDB.

show copying
info copying
Display information about permission for copying GDB.

show warranty

info warranty
Display the aNU “NO WARRANTY?” statement, or a warranty, if your version
of GDB comes with one.

show configuration
Display detailed information about the way GDB was configured when it was
built. This displays the optional arguments passed to the configure script
and also configuration parameters detected automatically by configure. When
reporting a GDB bug (see Chapter 31 [GDB Bugs], page 571), it is important
to include this information in your report.

Chapter 4: Running Programs Under GDB 25

4 Running Programs Under GDB

When you run a program under GDB, you must first generate debugging information when
you compile it.

You may start GDB with its arguments, if any, in an environment of your choice. If you
are doing native debugging, you may redirect your program’s input and output, debug an
already running process, or kill a child process.

4.1 Compiling for Debugging

In order to debug a program effectively, you need to generate debugging information when
you compile it. This debugging information is stored in the object file; it describes the data
type of each variable or function and the correspondence between source line numbers and
addresses in the executable code.

To request debugging information, specify the ‘-g’ option when you run the compiler.

Programs that are to be shipped to your customers are compiled with optimizations,
using the ‘-0’ compiler option. However, some compilers are unable to handle the ‘-g’ and
‘-0’ options together. Using those compilers, you cannot generate optimized executables
containing debugging information.

Gcc, the aNU C/C++ compiler, supports ‘-g’ with or without ‘-0’, making it possible
to debug optimized code. We recommend that you always use ‘-g’ whenever you compile
a program. You may think your program is correct, but there is no sense in pushing your
luck. For more information, see Chapter 11 [Optimized Code|, page 159.

Older versions of the GNU C compiler permitted a variant option ‘-gg’ for debugging
information. GDB no longer supports this format; if your GNU C compiler has this option,
do not use it.

GDB knows about preprocessor macros and can show you their expansion (see Chapter 12
[Macros|, page 163). Most compilers do not include information about preprocessor macros
in the debugging information if you specify the —g flag alone. Version 3.1 and later of Gcc,
the GNU C compiler, provides macro information if you are using the DWARF debugging
format, and specify the option -g3.

See Section “Options for Debugging Your Program or GCC” in Using the GNU Compiler
Collection (GCC), for more information on GCC options affecting debug information.

You will have the best debugging experience if you use the latest version of the DWARF
debugging format that your compiler supports. DWARF is currently the most expressive
and best supported debugging format in GDB.

26 Debugging with GDB

4.2 Starting your Program

run

r Use the run command to start your program under GDB. You must first specify
the program name with an argument to GDB (see Chapter 2 [Getting In and
Out of GDBJ, page 11), or by using the file or exec-file command (see
Section 18.1 [Commands to Specify Files], page 241).

If you are running your program in an execution environment that supports processes,
run creates an inferior process and makes that process run your program. In some envi-
ronments without processes, run jumps to the start of your program. Other targets, like
‘remote’, are always running. If you get an error message like this one:

The "remote" target does not support "run".
Try "help target" or "continue".

then use continue to run your program. You may need load first (see [load], page 261).

The execution of a program is affected by certain information it receives from its superior.
GDB provides ways to specify this information, which you must do before starting your
program. (You can change it after starting your program, but such changes only affect your
program the next time you start it.) This information may be divided into four categories:

The arguments.

Specify the arguments to give your program as the arguments of the run com-
mand. If a shell is available on your target, the shell is used to pass the argu-
ments, so that you may use normal conventions (such as wildcard expansion or
variable substitution) in describing the arguments. In Unix systems, you can
control which shell is used with the SHELL environment variable. If you do not
define SHELL, GDB uses the default shell (/bin/sh). You can disable use of any
shell with the set startup-with-shell command (see below for details).

The environment.
Your program normally inherits its environment from GDB, but you can use
the GDB commands set environment and unset environment to change parts
of the environment that affect your program. See Section 4.4 [Your Program’s
Environment], page 30.

The working directory.
Your program inherits its working directory from GDB. You can set the GDB
working directory with the cd command in GDB. See Section 4.5 [Your Pro-
gram’s Working Directory]|, page 31.

The standard input and output.
Your program normally uses the same device for standard input and standard
output as GDB is using. You can redirect input and output in the run command
line, or you can use the tty command to set a different device for your program.
See Section 4.6 [Your Program’s Input and Output], page 32.

Warning: While input and output redirection work, you cannot use pipes to
pass the output of the program you are debugging to another program; if you
attempt this, GDB is likely to wind up debugging the wrong program.

Chapter 4: Running Programs Under GDB 27

When you issue the run command, your program begins to execute immediately. See
Chapter 5 [Stopping and Continuing|, page 45, for discussion of how to arrange for your
program to stop. Once your program has stopped, you may call functions in your program,
using the print or call commands. See Chapter 10 [Examining Datal, page 115.

If the modification time of your symbol file has changed since the last time GDB read its
symbols, ¢DB discards its symbol table, and reads it again. When it does this, GDB tries to
retain your current breakpoints.

start

The name of the main procedure can vary from language to language. With
C or C++, the main procedure name is always main, but other languages such
as Ada do not require a specific name for their main procedure. The debugger
provides a convenient way to start the execution of the program and to stop at
the beginning of the main procedure, depending on the language used.

The ‘start’ command does the equivalent of setting a temporary breakpoint
at the beginning of the main procedure and then invoking the ‘run’ command.

Some programs contain an elaboration phase where some startup code is exe-
cuted before the main procedure is called. This depends on the languages used
to write your program. In C++, for instance, constructors for static and global
objects are executed before main is called. It is therefore possible that the
debugger stops before reaching the main procedure. However, the temporary
breakpoint will remain to halt execution.

Specify the arguments to give to your program as arguments to the ‘start’
command. These arguments will be given verbatim to the underlying ‘run’
command. Note that the same arguments will be reused if no argument is
provided during subsequent calls to ‘start’ or ‘run’.

It is sometimes necessary to debug the program during elaboration. In these
cases, using the start command would stop the execution of your program
too late, as the program would have already completed the elaboration phase.
Under these circumstances, insert breakpoints in your elaboration code before
running your program.

set exec-wrapper wrapper
show exec-wrapper
unset exec-wrapper

When ‘exec-wrapper’ is set, the specified wrapper is used to launch programs
for debugging. GDB starts your program with a shell command of the form exec
wrapper program. Quoting is added to program and its arguments, but not to
wrapper, so you should add quotes if appropriate for your shell. The wrapper
runs until it executes your program, and then GDB takes control.

You can use any program that eventually calls execve with its arguments as
a wrapper. Several standard Unix utilities do this, e.g. env and nohup. Any
Unix shell script ending with exec "$@" will also work.

For example, you can use env to pass an environment variable to the debugged
program, without setting the variable in your shell’s environment:

(gdb) set exec-wrapper env ’LD_PRELOAD=libtest.so’
(gdb) run

28 Debugging with GDB

This command is available when debugging locally on most targets, excluding
DJGPP, Cygwin, MS Windows, and QNX Neutrino.

set startup-with-shell
set startup-with-shell on
set startup-with-shell off
show set startup-with-shell
On Unix systems, by default, if a shell is available on your target, GDB) uses it
to start your program. Arguments of the run command are passed to the shell,
which does variable substitution, expands wildcard characters and performs
redirection of I/0O. In some circumstances, it may be useful to disable such use
of a shell, for example, when debugging the shell itself or diagnosing startup
failures such as:
(gdb) run
Starting program: ./a.out
During startup program terminated with signal SIGSEGV, Segmentation fault.
which indicates the shell or the wrapper specified with ‘exec-wrapper’ crashed,
not your program. Most often, this is caused by something odd in your shell’s
non-interactive mode initialization file—such as .cshrc for C-shell, $.zshenv
for the Z shell, or the file specified in the ‘BASH_ENV’ environment variable for
BASH.

set auto-connect-native-target

set auto-connect-native-target on

set auto-connect-native-target off

show auto-connect-native-target
By default, if not connected to any target yet (e.g., with target remote), the
run command starts your program as a native process under GDB, on your
local machine. If you’re sure you don’t want to debug programs on your local
machine, you can tell GDB to not connect to the native target automatically
with the set auto-connect-native-target off command.

If on, which is the default, and if GDB is not connected to a target already, the
run command automaticaly connects to the native target, if one is available.

If off, and if GDB is not connected to a target already, the run command fails
with an error:

(gdb) run

Don’t know how to run. Try "help target".
If GDB is already connected to a target, GDB always uses it with the run com-
mand.

In any case, you can explicitly connect to the native target with the target
native command. For example,

(gdb) set auto-connect-native-target off
(gdb) run

Don’t know how to run. Try "help target".
(gdb) target native

(gdb) run

Starting program: ./a.out

[Inferior 1 (process 10421) exited normally]

Chapter 4: Running Programs Under GDB 29

In case you connected explicitly to the native target, GDB remains connected
even if all inferiors exit, ready for the next run command. Use the disconnect
command to disconnect.

Examples of other commands that likewise respect the auto-connect-native-
target setting: attach, info proc, info os.

set disable-randomization

set disable-randomization on
This option (enabled by default in GDB) will turn off the native randomiza-
tion of the virtual address space of the started program. This option is useful
for multiple debugging sessions to make the execution better reproducible and
memory addresses reusable across debugging sessions.

This feature is implemented only on certain targets, including GNU/Linux. On
GNU/Linux you can get the same behavior using

(gdb) set exec-wrapper setarch ‘uname -m‘ -R

set disable-randomization off
Leave the behavior of the started executable unchanged. Some bugs rear their
ugly heads only when the program is loaded at certain addresses. If your bug
disappears when you run the program under GDB, that might be because GDB
by default disables the address randomization on platforms, such as GNU/Linux,
which do that for stand-alone programs. Use set disable-randomization off
to try to reproduce such elusive bugs.

On targets where it is available, virtual address space randomization protects
the programs against certain kinds of security attacks. In these cases the at-
tacker needs to know the exact location of a concrete executable code. Ran-
domizing its location makes it impossible to inject jumps misusing a code at its
expected addresses.

Prelinking shared libraries provides a startup performance advantage but it
makes addresses in these libraries predictable for privileged processes by having
just unprivileged access at the target system. Reading the shared library binary
gives enough information for assembling the malicious code misusing it. Still
even a prelinked shared library can get loaded at a new random address just
requiring the regular relocation process during the startup. Shared libraries not
already prelinked are always loaded at a randomly chosen address.

Position independent executables (PIE) contain position independent code sim-
ilar to the shared libraries and therefore such executables get loaded at a ran-
domly chosen address upon startup. PIE executables always load even already
prelinked shared libraries at a random address. You can build such executable
using gcc —fPIE -pie.

Heap (malloc storage), stack and custom mmap areas are always placed ran-
domly (as long as the randomization is enabled).

show disable-randomization
Show the current setting of the explicit disable of the native randomization of
the virtual address space of the started program.

30 Debugging with GDB

4.3 Your Program’s Arguments

The arguments to your program can be specified by the arguments of the run command.
They are passed to a shell, which expands wildcard characters and performs redirection of
I/0, and thence to your program. Your SHELL environment variable (if it exists) specifies
what shell GDB uses. If you do not define SHELL, GDB uses the default shell (/bin/sh on
Unix).

On non-Unix systems, the program is usually invoked directly by GDB, which emulates
I/0O redirection via the appropriate system calls, and the wildcard characters are expanded
by the startup code of the program, not by the shell.

run with no arguments uses the same arguments used by the previous run, or those set
by the set args command.

set args Specify the arguments to be used the next time your program is run. If set
args has no arguments, run executes your program with no arguments. Once
you have run your program with arguments, using set args before the next
run is the only way to run it again without arguments.

show args Show the arguments to give your program when it is started.

4.4 Your Program’s Environment

The environment consists of a set of environment variables and their values. Environment
variables conventionally record such things as your user name, your home directory, your
terminal type, and your search path for programs to run. Usually you set up environment
variables with the shell and they are inherited by all the other programs you run. When
debugging, it can be useful to try running your program with a modified environment
without having to start GDB over again.

path directory
Add directory to the front of the PATH environment variable (the search path
for executables) that will be passed to your program. The value of PATH used
by GDB does not change. You may specify several directory names, separated
by whitespace or by a system-dependent separator character (‘:” on Unix, *;’
on MS-DOS and MS-Windows). If directory is already in the path, it is moved

to the front, so it is searched sooner.

You can use the string ‘$cwd’ to refer to whatever is the current working direc-
tory at the time GDB searches the path. If you use ‘.’ instead, it refers to the
directory where you executed the path command. GDB replaces ‘.’ in the di-
rectory argument (with the current path) before adding directory to the search
path.

show paths
Display the list of search paths for executables (the PATH environment variable).

show environment [varname|
Print the value of environment variable varname to be given to your program
when it starts. If you do not supply varname, print the names and values of
all environment variables to be given to your program. You can abbreviate
environment as env.

Chapter 4: Running Programs Under GDB 31

set environment varname [=value]
Set environment variable varname to value. The value changes for your pro-
gram (and the shell GDB uses to launch it), not for GDB itself. The value may be
any string; the values of environment variables are just strings, and any inter-
pretation is supplied by your program itself. The value parameter is optional;
if it is eliminated, the variable is set to a null value.

For example, this command:
set env USER = foo

tells the debugged program, when subsequently run, that its user is named
‘foo’. (The spaces around ‘=" are used for clarity here; they are not actually
required.)

Note that on Unix systems, GDB runs your program via a shell, which also
inherits the environment set with set environment. If necessary, you can avoid
that by using the ‘env’ program as a wrapper instead of using set environment.
See [set exec-wrapper], page 27, for an example doing just that.

unset environment varname
Remove variable varname from the environment to be passed to your program.
This is different from ‘set env varname =’; unset environment removes the
variable from the environment, rather than assigning it an empty value.

Warning: On Unix systems, GDB runs your program using the shell indicated by your
SHELL environment variable if it exists (or /bin/sh if not). If your SHELL variable names
a shell that runs an initialization file when started non-interactively—such as .cshrc for
C-shell, $.zshenv for the Z shell, or the file specified in the ‘BASH_ENV’ environment variable
for BASH—any variables you set in that file affect your program. You may wish to move
setting of environment variables to files that are only run when you sign on, such as .login
or .profile.

4.5 Your Program’s Working Directory

Each time you start your program with run, it inherits its working directory from the current
working directory of GDB. The GDB working directory is initially whatever it inherited from
its parent process (typically the shell), but you can specify a new working directory in GDB
with the cd command.

The ¢DB working directory also serves as a default for the commands that specify files
for GDB to operate on. See Section 18.1 [Commands to Specify Files|, page 241.

cd [directory]
Set the GDB working directory to directory. If not given, directory uses °>~’.

pwd Print the GDB working directory.

It is generally impossible to find the current working directory of the process being
debugged (since a program can change its directory during its run). If you work on a system
where GDB is configured with the /proc support, you can use the info proc command
(see Section 21.1.2 [SVR4 Process Information|, page 283) to find out the current working
directory of the debuggee.

32 Debugging with GDB

4.6 Your Program’s Input and Output

By default, the program you run under GDB does input and output to the same terminal
that GDB uses. GDB switches the terminal to its own terminal modes to interact with you,
but it records the terminal modes your program was using and switches back to them when
you continue running your program.

info terminal
Displays information recorded by GDB about the terminal modes your program
is using.

You can redirect your program’s input and/or output using shell redirection with the
run command. For example,
run > outfile

starts your program, diverting its output to the file outfile.

Another way to specify where your program should do input and output is with the
tty command. This command accepts a file name as argument, and causes this file to be
the default for future run commands. It also resets the controlling terminal for the child
process, for future run commands. For example,

tty /dev/ttyb
directs that processes started with subsequent run commands default to do input and output
on the terminal /dev/ttyb and have that as their controlling terminal.

An explicit redirection in run overrides the tty command’s effect on the input/output
device, but not its effect on the controlling terminal.

When you use the tty command or redirect input in the run command, only the input
for your program is affected. The input for GDB still comes from your terminal. tty is an
alias for set inferior-tty.

You can use the show inferior-tty command to tell GDB to display the name of the
terminal that will be used for future runs of your program.

set inferior-tty [tty]
Set the tty for the program being debugged to tty. Omitting tty restores the
default behavior, which is to use the same terminal as GDB.

show inferior-tty
Show the current tty for the program being debugged.

4.7 Debugging an Already-running Process

attach process-id
This command attaches to a running process—one that was started outside
GDB. (info files shows your active targets.) The command takes as argument
a process ID. The usual way to find out the process-id of a Unix process is with
the ps utility, or with the ‘jobs -1’ shell command.

attach does not repeat if you press RET a second time after executing the
command.

To use attach, your program must be running in an environment which supports pro-
cesses; for example, attach does not work for programs on bare-board targets that lack an
operating system. You must also have permission to send the process a signal.

Chapter 4: Running Programs Under GDB 33

When you use attach, the debugger finds the program running in the process first by
looking in the current working directory, then (if the program is not found) by using the
source file search path (see Section 9.5 [Specifying Source Directories|, page 107). You can
also use the file command to load the program. See Section 18.1 [Commands to Specify
Files], page 241.

The first thing GDB does after arranging to debug the specified process is to stop it. You
can examine and modify an attached process with all the GDB commands that are ordinarily
available when you start processes with run. You can insert breakpoints; you can step and
continue; you can modify storage. If you would rather the process continue running, you
may use the continue command after attaching GDB to the process.

detach When you have finished debugging the attached process, you can use the detach
command to release it from GDB control. Detaching the process continues its
execution. After the detach command, that process and GDB become com-
pletely independent once more, and you are ready to attach another process
or start one with run. detach does not repeat if you press RET again after
executing the command.

If you exit GDB while you have an attached process, you detach that process. If you use
the run command, you Kkill that process. By default, GDB asks for confirmation if you try
to do either of these things; you can control whether or not you need to confirm by using
the set confirm command (see Section 22.8 [Optional Warnings and Messages|, page 315).

4.8 Killing the Child Process

kill Kill the child process in which your program is running under GDB.

This command is useful if you wish to debug a core dump instead of a running process.
GDB ignores any core dump file while your program is running.

On some operating systems, a program cannot be executed outside GDB while you have
breakpoints set on it inside GDB. You can use the kill command in this situation to permit
running your program outside the debugger.

The kill command is also useful if you wish to recompile and relink your program,
since on many systems it is impossible to modify an executable file while it is running in a
process. In this case, when you next type run, GDB notices that the file has changed, and
reads the symbol table again (while trying to preserve your current breakpoint settings).

4.9 Debugging Multiple Inferiors and Programs

GDB lets you run and debug multiple programs in a single session. In addition, GDB on
some systems may let you run several programs simultaneously (otherwise you have to exit
from one before starting another). In the most general case, you can have multiple threads
of execution in each of multiple processes, launched from multiple executables.

GDB represents the state of each program execution with an object called an inferior.
An inferior typically corresponds to a process, but is more general and applies also to
targets that do not have processes. Inferiors may be created before a process runs, and may
be retained after a process exits. Inferiors have unique identifiers that are different from
process ids. Usually each inferior will also have its own distinct address space, although

34 Debugging with GDB

some embedded targets may have several inferiors running in different parts of a single
address space. Each inferior may in turn have multiple threads running in it.

To find out what inferiors exist at any moment, use info inferiors:
info inferiors
Print a list of all inferiors currently being managed by GDB.
GDB displays for each inferior (in this order):
1. the inferior number assigned by GDB
2. the target system’s inferior identifier

3. the name of the executable the inferior is running.

An asterisk ‘*’ preceding the GDB inferior number indicates the current inferior.

For example,

(gdb) info inferiors

Num Description Executable
2 process 2307 hello
* 1 process 3401 goodbye

To switch focus between inferiors, use the inferior command:

inferior infno
Make inferior number infno the current inferior. The argument infno is the infe-
rior number assigned by GDB, as shown in the first field of the ‘info inferiors’
display.

The debugger convenience variable ‘$_inferior’ contains the number of the current
inferior. You may find this useful in writing breakpoint conditional expressions, command
scripts, and so forth. See Section 10.11 [Convenience Variables|, page 139, for general
information on convenience variables.

You can get multiple executables into a debugging session via the add-inferior and
clone-inferior commands. On some systems GDB can add inferiors to the debug session
automatically by following calls to fork and exec. To remove inferiors from the debugging
session use the remove-inferiors command.

add-inferior [-copies n] [-exec executable]
Adds n inferiors to be run using executable as the executable; n defaults to 1.
If no executable is specified, the inferiors begins empty, with no program. You
can still assign or change the program assigned to the inferior at any time by
using the file command with the executable name as its argument.

clone-inferior [-copies n] [infno]
Adds n inferiors ready to execute the same program as inferior infno; n defaults
to 1, and infno defaults to the number of the current inferior. This is a conve-
nient command when you want to run another instance of the inferior you are

debugging.
(gdb) info inferiors
Num Description Executable
* 1 process 29964 helloworld

(gdb) clone-inferior
Added inferior 2.
1 inferiors added.

Chapter 4: Running Programs Under GDB 35

(gdb) info inferiors

Num Description Executable
2 <null> helloworld
* 1 process 29964 helloworld

You can now simply switch focus to inferior 2 and run it.

remove-inferiors infno...
Removes the inferior or inferiors infno.... It is not possible to remove an
inferior that is running with this command. For those, use the kill or detach
command first.

To quit debugging one of the running inferiors that is not the current inferior, you
can either detach from it by using the detach inferior command (allowing it to run
independently), or kill it using the kill inferiors command:

detach inferior infno...
Detach from the inferior or inferiors identified by GDB inferior number(s)
infno. . .. Note that the inferior’s entry still stays on the list of inferiors shown
by info inferiors, but its Description will show ‘<null>’.

kill inferiors infno...
Kill the inferior or inferiors identified by GDB inferior number(s) infno. . ..
Note that the inferior’s entry still stays on the list of inferiors shown by info
inferiors, but its Description will show ‘<null>’.

After the successful completion of a command such as detach, detach inferiors, kill
or kill inferiors, or after a normal process exit, the inferior is still valid and listed with
info inferiors, ready to be restarted.

To be notified when inferiors are started or exit under GDB’s control use
set print inferior-events:

set print inferior-events

set print inferior-events on

set print inferior-events off
The set print inferior-events command allows you to enable or disable
printing of messages when GDB notices that new inferiors have started or that
inferiors have exited or have been detached. By default, these messages will
not be printed.

show print inferior-events
Show whether messages will be printed when GDB detects that inferiors have
started, exited or have been detached.

Many commands will work the same with multiple programs as with a single program:
e.g., print myglobal will simply display the value of myglobal in the current inferior.

Occasionaly, when debugging GDB itself, it may be useful to get more info about the
relationship of inferiors, programs, address spaces in a debug session. You can do that with
the maint info program-spaces command.

maint info program-spaces
Print a list of all program spaces currently being managed by GDB.

GDB displays for each program space (in this order):

36 Debugging with GDB

1. the program space number assigned by GDB

2. the name of the executable loaded into the program space, with e.g., the
file command.

An asterisk ‘*’ preceding the GDB program space number indicates the current
program space.

In addition, below each program space line, GDB prints extra information that
isn’t suitable to display in tabular form. For example, the list of inferiors bound
to the program space.
(gdb) maint info program-spaces
Id Executable
* 1 hello
2 goodbye
Bound inferiors: ID 1 (process 21561)
Here we can see that no inferior is running the program hello, while process
21561 is running the program goodbye. On some targets, it is possible that
multiple inferiors are bound to the same program space. The most common
example is that of debugging both the parent and child processes of a vfork
call. For example,

(gdb) maint info program-spaces
Id Executable
* 1 viork-test
Bound inferiors: ID 2 (process 18050), ID 1 (process 18045)

Here, both inferior 2 and inferior 1 are running in the same program space as
a result of inferior 1 having executed a vfork call.

4.10 Debugging Programs with Multiple Threads

In some operating systems, such as GNU/Linux and Solaris, a single program may have more
than one thread of execution. The precise semantics of threads differ from one operating
system to another, but in general the threads of a single program are akin to multiple
processes—except that they share one address space (that is, they can all examine and
modify the same variables). On the other hand, each thread has its own registers and
execution stack, and perhaps private memory.

GDB provides these facilities for debugging multi-thread programs:
e automatic notification of new threads
e ‘thread thread-id’, a command to switch among threads
e ‘info threads’, a command to inquire about existing threads

e ‘thread apply [thread-id-list] [all] args’, a command to apply a command to a
list of threads

e thread-specific breakpoints

e ‘set print thread-events’, which controls printing of messages on thread start and
exit.

e ‘set libthread-db-search-path path’, which lets the user specify which 1ibthread_
db to use if the default choice isn’t compatible with the program.

The GDB thread debugging facility allows you to observe all threads while your program
runs—but whenever GDB takes control, one thread in particular is always the focus of

Chapter 4: Running Programs Under GDB 37

debugging. This thread is called the current thread. Debugging commands show program
information from the perspective of the current thread.

Whenever GDB detects a new thread in your program, it displays the target system’s
identification for the thread with a message in the form ‘[New systagl’, where systag is a
thread identifier whose form varies depending on the particular system. For example, on
GNU/Linux, you might see

[New Thread 0x41e02940 (LWP 25582)]

when GDB notices a new thread. In contrast, on other systems, the systag is simply some-
thing like ‘process 368’, with no further qualifier.

For debugging purposes, GDB associates its own thread number —always a single
integer—with each thread of an inferior. This number is unique between all threads of an
inferior, but not unique between threads of different inferiors.

You can refer to a given thread in an inferior using the qualified inferior-num.thread-num
syntax, also known as qualified thread ID, with inferior-num being the inferior number and
thread-num being the thread number of the given inferior. For example, thread 2.3 refers
to thread number 3 of inferior 2. If you omit inferior-num (e.g., thread 3), then GDB infers
you're referring to a thread of the current inferior.

Until you create a second inferior, GDB does not show the inferior-num part of thread
IDs, even though you can always use the full inferior-num.thread-num form to refer to
threads of inferior 1, the initial inferior.

Some commands accept a space-separated thread ID list as argument. A list element
can be:

1. A thread ID as shown in the first field of the ‘info threads’ display, with or without
an inferior qualifier. E.g., ‘2.1’ or ‘1’

2. A range of thread numbers, again with or without an inferior qualifier, as in inf.thrl-
thr2 or thrl-thr2. E.g., ‘1.2-4’ or ‘2-4’.

3. All threads of an inferior, specified with a star wildcard, with or without an inferior
qualifier, as in infx (e.g., ‘1.*’) or *. The former refers to all threads of the given
inferior, and the latter form without an inferior qualifier refers to all threads of the
current inferior.

For example, if the current inferior is 1, and inferior 7 has one thread with ID 7.1, the
thread list ‘1 2-3 4.5 6.7-9 7.* includes threads 1 to 3 of inferior 1, thread 5 of inferior
4, threads 7 to 9 of inferior 6 and all threads of inferior 7. That is, in expanded qualified
form, the same as ‘1.1 1.21.34.56.76.86.97.1.

In addition to a per-inferior number, each thread is also assigned a unique global number,
also known as global thread ID, a single integer. Unlike the thread number component of
the thread ID, no two threads have the same global ID, even when you’re debugging multiple
inferiors.

From GDB’s perspective, a process always has at least one thread. In other words,
GDB assigns a thread number to the program’s “main thread” even if the program is not
multi-threaded.

The debugger convenience variables ‘$_thread’ and ‘$_gthread’ contain, respectively,
the per-inferior thread number and the global thread number of the current thread. You
may find this useful in writing breakpoint conditional expressions, command scripts, and

38 Debugging with GDB

so forth. See Section 10.11 [Convenience Variables], page 139, for general information on
convenience variables.

If GDB detects the program is multi-threaded, it augments the usual message about
stopping at a breakpoint with the ID and name of the thread that hit the breakpoint.
Thread 2 "client" hit Breakpoint 1, send_message () at client.c:68

Likewise when the program receives a signal:

Thread 1 "main" received signal SIGINT, Interrupt.

info threads [thread-id-1ist]
Display information about one or more threads. With no arguments displays
information about all threads. You can specify the list of threads that you want
to display using the thread ID list syntax (see [thread ID lists|, page 37).

GDB displays for each thread (in this order):

1. the per-inferior thread number assigned by GDB

2. the global thread number assigned by GDB, if the ‘-~gid’ option was specified
3. the target system’s thread identifier (systag)
4

. the thread’s name, if one is known. A thread can either be named by the
user (see thread name, below), or, in some cases, by the program itself.

5. the current stack frame summary for that thread

An asterisk ‘*’ to the left of the GDB thread number indicates the current thread.

For example,

(gdb) info threads
Id Target Id Frame
* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2 process 35 thread 23 0x34e5 in sigpause ()
3 process 35 thread 27 0x34e5 in sigpause ()
at threadtest.c:68

If you're debugging multiple inferiors, GDB displays thread IDs using the qualified
inferior-num.thread-num format. Otherwise, only thread-num is shown.

If you specify the ‘-gid’ option, ¢DB displays a column indicating each thread’s global
thread ID:

(gdb) info threads

Id GId Target Id Frame
1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
3 process 35 thread 23 0x34e5 in sigpause ()
4 process 35 thread 27 0x34e5 in sigpause ()
2

* process 65 thread 1 main (argc=1, argv=0x7ffffff8)

N R =
W N -

On Solaris, you can display more information about user threads with a Solaris-specific
command:

maint info sol-threads
Display info on Solaris user threads.

thread thread-id
Make thread ID thread-id the current thread. The command argument thread-
id is the GDB thread ID, as shown in the first field of the ‘info threads’ display,
with or without an inferior qualifier (e.g., ‘2.1" or ‘1’).

Chapter 4: Running Programs Under GDB 39

GDB responds by displaying the system identifier of the thread you selected,
and its current stack frame summary:

(gdb) thread 2

[Switching to thread 2 (Thread Oxb7fdab70 (LWP 12747))]

#0 some_function (ignore=0x0) at example.c:8

8 printf ("hello\n");
As with the ‘[New ...]" message, the form of the text after ‘Switching to’
depends on your system’s conventions for identifying threads.

thread apply [thread-id-list | all [-ascending]] command
The thread apply command allows you to apply the named command to one
or more threads. Specify the threads that you want affected using the thread
ID list syntax (see [thread ID lists], page 37), or specify all to apply to all
threads. To apply a command to all threads in descending order, type thread
apply all command. To apply a command to all threads in ascending order,
type thread apply all -ascending command.

thread name [name]
This command assigns a name to the current thread. If no argument is given,
any existing user-specified name is removed. The thread name appears in the
‘info threads’ display.

On some systems, such as GNU/Linux, GDB is able to determine the name of
the thread as given by the OS. On these systems, a name specified with ‘thread
name’ will override the system-give name, and removing the user-specified name
will cause GDB to once again display the system-specified name.

thread find [regexp]
Search for and display thread ids whose name or systag matches the supplied
regular expression.

As well as being the complement to the ‘thread name’ command, this command
also allows you to identify a thread by its target systag. For instance, on
GNU/Linux, the target systag is the LWP id.

(GDB) thread find 26688
Thread 4 has target id ’Thread 0x41e02940 (LWP 26688)°
(GDB) info thread 4
Id Target Id Frame
4 Thread 0x41e02940 (LWP 26688) 0x00000031ca6cd372 in select ()

set print thread-events

set print thread-events on

set print thread-events off
The set print thread-events command allows you to enable or disable print-
ing of messages when GDB notices that new threads have started or that threads
have exited. By default, these messages will be printed if detection of these
events is supported by the target. Note that these messages cannot be disabled
on all targets.

show print thread-events
Show whether messages will be printed when GDB detects that threads have
started and exited.

40 Debugging with GDB

See Section 5.5 [Stopping and Starting Multi-thread Programs], page 77, for more infor-
mation about how GDB behaves when you stop and start programs with multiple threads.

See Section 5.1.2 [Setting Watchpoints|, page 52, for information about watchpoints in
programs with multiple threads.

set libthread-db-search-path [path]
If this variable is set, path is a colon-separated list of directories GDB will use
to search for libthread_db. If you omit path, ‘libthread-db-search-path’
will be reset to its default value ($sdir:$pdir on GNU/Linux and Solaris sys-
tems). Internally, the default value comes from the LIBTHREAD_DB_SEARCH_
PATH macro.

On ¢NU/Linux and Solaris systems, GDB uses a “helper” libthread_db li-
brary to obtain information about threads in the inferior process. GDB will use
‘libthread-db-search-path’ to find libthread_db. GDB also consults first if
inferior specific thread debugging library loading is enabled by ‘set auto-load
libthread-db’ (see Section 22.7.2 [libthread_db.so.1 file], page 312).

A special entry ‘$sdir’ for ‘libthread-db-search-path’ refers to the default
system directories that are normally searched for loading shared libraries. The
‘$sdir’ entry is the only kind not needing to be enabled by ‘set auto-load
libthread-db’ (see Section 22.7.2 [libthread_db.so.1 file], page 312).

A special entry ‘$pdir’ for ‘libthread-db-search-path’ refers to the directory
from which libpthread was loaded in the inferior process.

For any libthread_db library GDB finds in above directories, GDB attempts
to initialize it with the current inferior process. If this initialization fails
(which could happen because of a version mismatch between libthread_db
and libpthread), GDB will unload 1ibthread_db, and continue with the next
directory. If none of 1libthread_db libraries initialize successfully, GDB will
issue a warning and thread debugging will be disabled.

Setting libthread-db-search-path is currently implemented only on some
platforms.

show libthread-db-search-path
Display current libthread_db search path.

set debug libthread-db

show debug libthread-db
Turns on or off display of 1ibthread_db-related events. Use 1 to enable, 0 to
disable.

4.11 Debugging Forks

On most systems, GDB has no special support for debugging programs which create addi-
tional processes using the fork function. When a program forks, GDB will continue to debug
the parent process and the child process will run unimpeded. If you have set a breakpoint
in any code which the child then executes, the child will get a SIGTRAP signal which (unless
it catches the signal) will cause it to terminate.

However, if you want to debug the child process there is a workaround which isn’t too
painful. Put a call to sleep in the code which the child process executes after the fork. It

Chapter 4: Running Programs Under GDB 41

may be useful to sleep only if a certain environment variable is set, or a certain file exists,
so that the delay need not occur when you don’t want to run GDB on the child. While the
child is sleeping, use the ps program to get its process ID. Then tell GDB (a new invocation
of GDB if you are also debugging the parent process) to attach to the child process (see
Section 4.7 [Attach], page 32). From that point on you can debug the child process just like
any other process which you attached to.

On some systems, GDB provides support for debugging programs that create additional
processes using the fork or vfork functions. On GNU/Linux platforms, this feature is
supported with kernel version 2.5.46 and later.

The fork debugging commands are supported in native mode and when connected to
gdbserver in either target remote mode or target extended-remote mode.

By default, when a program forks, GDB will continue to debug the parent process and
the child process will run unimpeded.

If you want to follow the child process instead of the parent process, use the command
set follow-fork-mode.

set follow-fork-mode mode
Set the debugger response to a program call of fork or vfork. A call to fork
or vfork creates a new process. The mode argument can be:

parent The original process is debugged after a fork. The child process
runs unimpeded. This is the default.

child The new process is debugged after a fork. The parent process runs
unimpeded.

show follow-fork-mode
Display the current debugger response to a fork or vfork call.

On Linux, if you want to debug both the parent and child processes, use the command
set detach-on-fork.

set detach-on-fork mode
Tells gdb whether to detach one of the processes after a fork, or retain debugger
control over them both.

on The child process (or parent process, depending on the value of
follow-fork-mode) will be detached and allowed to run indepen-
dently. This is the default.

of f Both processes will be held under the control of GDB. One process
(child or parent, depending on the value of follow-fork-mode) is
debugged as usual, while the other is held suspended.

show detach-on-fork
Show whether detach-on-fork mode is on/off.

If you choose to set ‘detach-on-fork’ mode off, then GDB will retain control of all forked
processes (including nested forks). You can list the forked processes under the control of GDB
by using the info inferiors command, and switch from one fork to another by using the
inferior command (see Section 4.9 [Debugging Multiple Inferiors and Programs]|, page 33).

42 Debugging with GDB

To quit debugging one of the forked processes, you can either detach from it by using
the detach inferiors command (allowing it to run independently), or kill it using the
kill inferiors command. See Section 4.9 [Debugging Multiple Inferiors and Programs],
page 33.

If you ask to debug a child process and a vfork is followed by an exec, GDB executes
the new target up to the first breakpoint in the new target. If you have a breakpoint set on
main in your original program, the breakpoint will also be set on the child process’s main.

On some systems, when a child process is spawned by vfork, you cannot debug the child
or parent until an exec call completes.

If you issue a run command to GDB after an exec call executes, the new target restarts.
To restart the parent process, use the file command with the parent executable name
as its argument. By default, after an exec call executes, GDB discards the symbols of the
previous executable image. You can change this behaviour with the set follow-exec-mode
command.

set follow-exec-mode mode
Set debugger response to a program call of exec. An exec call replaces the
program image of a process.

follow-exec—-mode can be:

new GDB creates a new inferior and rebinds the process to this new
inferior. The program the process was running before the exec call
can be restarted afterwards by restarting the original inferior.

For example:

(gdb) info inferiors
(gdb) info inferior
Id Description Executable
* 1 <null> progl
(gdb) run
process 12020 is executing new program: prog2
Program exited normally.
(gdb) info inferiors
Id Description Executable

1 <null> progil
* 2 <null> prog2
same GDB keeps the process bound to the same inferior. The new exe-

cutable image replaces the previous executable loaded in the infe-
rior. Restarting the inferior after the exec call, with e.g., the run
command, restarts the executable the process was running after the
exec call. This is the default mode.

For example:

(gdb) info inferiors
Id Description Executable
* 1 <null> progil
(gdb) run
process 12020 is executing new program: prog2
Program exited normally.
(gdb) info inferiors
Id Description Executable
* 1 <null> prog?2

Chapter 4: Running Programs Under GDB 43

follow-exec-mode is supported in native mode and target extended-remote mode.

You can use the catch command to make GDB stop whenever a fork, vfork, or exec
call is made. See Section 5.1.3 [Setting Catchpoints], page 54.

4.12 Setting a Bookmark to Return to Later

On certain operating systems', GDB is able to save a snapshot of a program’s state, called
a checkpoint, and come back to it later.

Returning to a checkpoint effectively undoes everything that has happened in the pro-
gram since the checkpoint was saved. This includes changes in memory, registers, and even
(within some limits) system state. Effectively, it is like going back in time to the moment
when the checkpoint was saved.

Thus, if you're stepping thru a program and you think you’re getting close to the point
where things go wrong, you can save a checkpoint. Then, if you accidentally go too far and
miss the critical statement, instead of having to restart your program from the beginning,
you can just go back to the checkpoint and start again from there.

This can be especially useful if it takes a lot of time or steps to reach the point where
you think the bug occurs.

To use the checkpoint/restart method of debugging:

checkpoint
Save a snapshot of the debugged program’s current execution state. The
checkpoint command takes no arguments, but each checkpoint is assigned
a small integer id, similar to a breakpoint id.

info checkpoints
List the checkpoints that have been saved in the current debugging session. For
each checkpoint, the following information will be listed:

Checkpoint ID
Process ID

Code Address

Source line, or label

restart checkpoint-id
Restore the program state that was saved as checkpoint number checkpoint-id.
All program variables, registers, stack frames etc. will be returned to the values
that they had when the checkpoint was saved. In essence, gdb will “wind back
the clock” to the point in time when the checkpoint was saved.

Note that breakpoints, GDB variables, command history etc. are not affected
by restoring a checkpoint. In general, a checkpoint only restores things that
reside in the program being debugged, not in the debugger.

delete checkpoint checkpoint-id
Delete the previously-saved checkpoint identified by checkpoint-id.

Returning to a previously saved checkpoint will restore the user state of the program
being debugged, plus a significant subset of the system (OS) state, including file pointers. It

L' Currently, only GNU/Linux.

44 Debugging with GDB

won’t “un-write” data from a file, but it will rewind the file pointer to the previous location,
so that the previously written data can be overwritten. For files opened in read mode, the
pointer will also be restored so that the previously read data can be read again.

Of course, characters that have been sent to a printer (or other external device) cannot
be “snatched back”, and characters received from eg. a serial device can be removed from
internal program buffers, but they cannot be “pushed back” into the serial pipeline, ready
to be received again. Similarly, the actual contents of files that have been changed cannot
be restored (at this time).

However, within those constraints, you actually can “rewind” your program to a previ-
ously saved point in time, and begin debugging it again — and you can change the course
of events so as to debug a different execution path this time.

Finally, there is one bit of internal program state that will be different when you return
to a checkpoint — the program’s process id. Each checkpoint will have a unique process id
(or pid), and each will be different from the program’s original pid. If your program has
saved a local copy of its process id, this could potentially pose a problem.

4.12.1 A Non-obvious Benefit of Using Checkpoints

On some systems such as GNU/Linux, address space randomization is performed on new
processes for security reasons. This makes it difficult or impossible to set a breakpoint, or
watchpoint, on an absolute address if you have to restart the program, since the absolute
location of a symbol will change from one execution to the next.

A checkpoint, however, is an identical copy of a process. Therefore if you create a
checkpoint at (eg.) the start of main, and simply return to that checkpoint instead of
restarting the process, you can avoid the effects of address randomization and your symbols
will all stay in the same place.

Chapter 5: Stopping and Continuing 45

5 Stopping and Continuing

The principal purposes of using a debugger are so that you can stop your program before it
terminates; or so that, if your program runs into trouble, you can investigate and find out
why.

Inside GDB, your program may stop for any of several reasons, such as a signal, a break-
point, or reaching a new line after a GDB command such as step. You may then examine
and change variables, set new breakpoints or remove old ones, and then continue execu-
tion. Usually, the messages shown by GDB provide ample explanation of the status of your
program—but you can also explicitly request this information at any time.

info program
Display information about the status of your program: whether it is running
or not, what process it is, and why it stopped.

5.1 Breakpoints, Watchpoints, and Catchpoints

A breakpoint makes your program stop whenever a certain point in the program is reached.
For each breakpoint, you can add conditions to control in finer detail whether your program
stops. You can set breakpoints with the break command and its variants (see Section 5.1.1
[Setting Breakpoints], page 46), to specify the place where your program should stop by
line number, function name or exact address in the program.

On some systems, you can set breakpoints in shared libraries before the executable is
run.

A watchpoint is a special breakpoint that stops your program when the value of an
expression changes. The expression may be a value of a variable, or it could involve values
of one or more variables combined by operators, such as ‘a + b’. This is sometimes called
data breakpoints. You must use a different command to set watchpoints (see Section 5.1.2
[Setting Watchpoints|, page 52), but aside from that, you can manage a watchpoint like any
other breakpoint: you enable, disable, and delete both breakpoints and watchpoints using
the same commands.

You can arrange to have values from your program displayed automatically whenever
GDB stops at a breakpoint. See Section 10.7 [Automatic Display], page 126.

A catchpoint is another special breakpoint that stops your program when a certain kind
of event occurs, such as the throwing of a C++ exception or the loading of a library. As with
watchpoints, you use a different command to set a catchpoint (see Section 5.1.3 [Setting
Catchpoints|, page 54), but aside from that, you can manage a catchpoint like any other
breakpoint. (To stop when your program receives a signal, use the handle command; see
Section 5.4 [Signals|, page 74.)

GDB assigns a number to each breakpoint, watchpoint, or catchpoint when you create
it; these numbers are successive integers starting with one. In many of the commands for
controlling various features of breakpoints you use the breakpoint number to say which
breakpoint you want to change. Each breakpoint may be enabled or disabled; if disabled,
it has no effect on your program until you enable it again.

Some GDB commands accept a space-separated list of breakpoints on which to operate.
A list element can be either a single breakpoint number, like ‘5’, or a range of such numbers,

46 Debugging with GDB

like ‘6-7’. When a breakpoint list is given to a command, all breakpoints in that list are
operated on.

5.1.1 Setting Breakpoints

Breakpoints are set with the break command (abbreviated b). The debugger conve-
nience variable ‘$bpnum’ records the number of the breakpoint you've set most recently;
see Section 10.11 [Convenience Variables], page 139, for a discussion of what you can do
with convenience variables.

break location
Set a breakpoint at the given location, which can specify a function name, a line
number, or an address of an instruction. (See Section 9.2 [Specify Location],
page 104, for a list of all the possible ways to specify a location.) The breakpoint
will stop your program just before it executes any of the code in the specified
location.

When using source languages that permit overloading of symbols, such as C++,
a function name may refer to more than one possible place to break. See
Section 10.2 [Ambiguous Expressions|, page 118, for a discussion of that situa-
tion.

It is also possible to insert a breakpoint that will stop the program only if a
specific thread (see Section 5.5.4 [Thread-Specific Breakpoints|, page 80) or a
specific task (see Section 15.4.10.7 [Ada Tasks|, page 215) hits that breakpoint.

break When called without any arguments, break sets a breakpoint at the next in-
struction to be executed in the selected stack frame (see Chapter 8 [Examining
the Stack], page 95). In any selected frame but the innermost, this makes your
program stop as soon as control returns to that frame. This is similar to the
effect of a finish command in the frame inside the selected frame—except that
finish does not leave an active breakpoint. If you use break without an ar-
gument in the innermost frame, GDB stops the next time it reaches the current
location; this may be useful inside loops.

GDB normally ignores breakpoints when it resumes execution, until at least one
instruction has been executed. If it did not do this, you would be unable to pro-
ceed past a breakpoint without first disabling the breakpoint. This rule applies
whether or not the breakpoint already existed when your program stopped.

break ... if cond
Set a breakpoint with condition cond; evaluate the expression cond each time
the breakpoint is reached, and stop only if the value is nonzero—that is, if cond
evaluates as true. ‘...’ stands for one of the possible arguments described
above (or no argument) specifying where to break. See Section 5.1.6 [Break
Conditions|, page 61, for more information on breakpoint conditions.

tbreak args
Set a breakpoint enabled only for one stop. The args are the same as for the
break command, and the breakpoint is set in the same way, but the breakpoint
is automatically deleted after the first time your program stops there. See
Section 5.1.5 [Disabling Breakpoints]|, page 60.

Chapter 5: Stopping and Continuing 47

hbreak args

Set a hardware-assisted breakpoint. The args are the same as for the break
command and the breakpoint is set in the same way, but the breakpoint re-
quires hardware support and some target hardware may not have this support.
The main purpose of this is EPROM/ROM code debugging, so you can set
a breakpoint at an instruction without changing the instruction. This can be
used with the new trap-generation provided by SPARClite DSU and most x86-
based targets. These targets will generate traps when a program accesses some
data or instruction address that is assigned to the debug registers. However
the hardware breakpoint registers can take a limited number of breakpoints.
For example, on the DSU, only two data breakpoints can be set at a time, and
GDB will reject this command if more than two are used. Delete or disable
unused hardware breakpoints before setting new ones (see Section 5.1.5 [Dis-
abling Breakpoints|, page 60). See Section 5.1.6 [Break Conditions|, page 61.
For remote targets, you can restrict the number of hardware breakpoints GDB
will use, see [set remote hardware-breakpoint-limit], page 273.

thbreak args

Set a hardware-assisted breakpoint enabled only for one stop. The args are the
same as for the hbreak command and the breakpoint is set in the same way.
However, like the tbreak command, the breakpoint is automatically deleted
after the first time your program stops there. Also, like the hbreak command,
the breakpoint requires hardware support and some target hardware may not
have this support. See Section 5.1.5 [Disabling Breakpoints|, page 60. See also
Section 5.1.6 [Break Conditions], page 61.

rbreak regex
Set breakpoints on all functions matching the regular expression regex. This
command sets an unconditional breakpoint on all matches, printing a list of all
breakpoints it set. Once these breakpoints are set, they are treated just like the
breakpoints set with the break command. You can delete them, disable them,
or make them conditional the same way as any other breakpoint.

The syntax of the regular expression is the standard one used with tools like
grep. Note that this is different from the syntax used by shells, so for instance
foox matches all functions that include an fo followed by zero or more os.
There is an implicit .* leading and trailing the regular expression you supply,
8o to match only functions that begin with foo, use “foo.

When debugging C++ programs, rbreak is useful for setting breakpoints on
overloaded functions that are not members of any special classes.

The rbreak command can be used to set breakpoints in all the functions in a
program, like this:
(gdb) rbreak .

rbreak file:regex
If rbreak is called with a filename qualification, it limits the search for functions
matching the given regular expression to the specified file. This can be used,
for example, to set breakpoints on every function in a given file:
(gdb) rbreak file.c:.

48 Debugging with GDB

The colon separating the filename qualifier from the regex may optionally be
surrounded by spaces.

info breakpoints [list...]

info break [list...]
Print a table of all breakpoints, watchpoints, and catchpoints set and not
deleted. Optional argument n means print information only about the spec-
ified breakpoint(s) (or watchpoint(s) or catchpoint(s)). For each breakpoint,
following columns are printed:

Breakpoint Numbers
Type Breakpoint, watchpoint, or catchpoint.

Disposition
Whether the breakpoint is marked to be disabled or deleted when
hit.

Enabled or Disabled

Enabled breakpoints are marked with ‘y’. ‘n’ marks breakpoints
that are not enabled.

Address Where the breakpoint is in your program, as a memory address.
For a pending breakpoint whose address is not yet known, this
field will contain ‘<PENDING>’. Such breakpoint won’t fire until a
shared library that has the symbol or line referred by breakpoint is
loaded. See below for details. A breakpoint with several locations
will have ‘<XMULTIPLE>’ in this field—see below for details.

What Where the breakpoint is in the source for your program, as a file and
line number. For a pending breakpoint, the original string passed
to the breakpoint command will be listed as it cannot be resolved
until the appropriate shared library is loaded in the future.

If a breakpoint is conditional, there are two evaluation modes: “host” and
“target”. If mode is “host”, breakpoint condition evaluation is done by GDB on
the host’s side. If it is “target”, then the condition is evaluated by the target.
The info break command shows the condition on the line following the affected
breakpoint, together with its condition evaluation mode in between parentheses.

Breakpoint commands, if any, are listed after that. A pending breakpoint is
allowed to have a condition specified for it. The condition is not parsed for
validity until a shared library is loaded that allows the pending breakpoint to
resolve to a valid location.

info break with a breakpoint number n as argument lists only that break-
point. The convenience variable $_ and the default examining-address for the
x command are set to the address of the last breakpoint listed (see Section 10.6
[Examining Memory]|, page 123).

info break displays a count of the number of times the breakpoint has been
hit. This is especially useful in conjunction with the ignore command. You
can ignore a large number of breakpoint hits, look at the breakpoint info to see
how many times the breakpoint was hit, and then run again, ignoring one less
than that number. This will get you quickly to the last hit of that breakpoint.

Chapter 5: Stopping and Continuing 49

For a breakpoints with an enable count (xref) greater than 1, info break also
displays that count.

GDB allows you to set any number of breakpoints at the same place in your program.
There is nothing silly or meaningless about this. When the breakpoints are conditional,
this is even useful (see Section 5.1.6 [Break Conditions], page 61).

It is possible that a breakpoint corresponds to several locations in your program. Ex-
amples of this situation are:

e Multiple functions in the program may have the same name.

e For a C++ constructor, the GCC compiler generates several instances of the function
body, used in different cases.

e For a C++ template function, a given line in the function can correspond to any number
of instantiations.

e For an inlined function, a given source line can correspond to several places where that
function is inlined.

In all those cases, GDB will insert a breakpoint at all the relevant locations.

A breakpoint with multiple locations is displayed in the breakpoint table using several
rows—one header row, followed by one row for each breakpoint location. The header row
has ‘MULTIPLE>’ in the address column. The rows for individual locations contain the
actual addresses for locations, and show the functions to which those locations belong. The
number column for a location is of the form breakpoint-number.location-number.

For example:

Num Type Disp Enb Address What
1 breakpoint keep y <MULTIPLE>

stop only if i==

breakpoint already hit 1 time
1.1 y 0x080486a2 in void foo<int>() at t.cc:8
1.2 y 0x080486¢ca in void foo<double>() at t.cc:8

Each location can be individually enabled or disabled by passing breakpoint-

number.location-number as argument to the enable and disable commands. Note that
you cannot delete the individual locations from the list, you can only delete the entire
list of locations that belong to their parent breakpoint (with the delete num command,
where num is the number of the parent breakpoint, 1 in the above example). Disabling
or enabling the parent breakpoint (see Section 5.1.5 [Disabling], page 60) affects all of the
locations that belong to that breakpoint.

It’s quite common to have a breakpoint inside a shared library. Shared libraries can
be loaded and unloaded explicitly, and possibly repeatedly, as the program is executed.
To support this use case, GDB updates breakpoint locations whenever any shared library
is loaded or unloaded. Typically, you would set a breakpoint in a shared library at the
beginning of your debugging session, when the library is not loaded, and when the symbols
from the library are not available. When you try to set breakpoint, GDB will ask you if you
want to set a so called pending breakpoint—breakpoint whose address is not yet resolved.

After the program is run, whenever a new shared library is loaded, GDB reevaluates all the
breakpoints. When a newly loaded shared library contains the symbol or line referred to by
some pending breakpoint, that breakpoint is resolved and becomes an ordinary breakpoint.

50 Debugging with GDB

When a library is unloaded, all breakpoints that refer to its symbols or source lines become
pending again.

This logic works for breakpoints with multiple locations, too. For example, if you have
a breakpoint in a C++ template function, and a newly loaded shared library has an instan-
tiation of that template, a new location is added to the list of locations for the breakpoint.

Except for having unresolved address, pending breakpoints do not differ from regular
breakpoints. You can set conditions or commands, enable and disable them and perform
other breakpoint operations.

GDB provides some additional commands for controlling what happens when the ‘break’
command cannot resolve breakpoint address specification to an address:

set breakpoint pending auto
This is the default behavior. When GDB cannot find the breakpoint location,
it queries you whether a pending breakpoint should be created.

set breakpoint pending on
This indicates that an unrecognized breakpoint location should automatically
result in a pending breakpoint being created.

set breakpoint pending off
This indicates that pending breakpoints are not to be created. Any unrecog-
nized breakpoint location results in an error. This setting does not affect any
pending breakpoints previously created.

show breakpoint pending
Show the current behavior setting for creating pending breakpoints.

The settings above only affect the break command and its variants. Once breakpoint is
set, it will be automatically updated as shared libraries are loaded and unloaded.

For some targets, GDB can automatically decide if hardware or software breakpoints
should be used, depending on whether the breakpoint address is read-only or read-write.
This applies to breakpoints set with the break command as well as to internal breakpoints
set by commands like next and finish. For breakpoints set with hbreak, GDB will always
use hardware breakpoints.

You can control this automatic behaviour with the following commands:

set breakpoint auto-hw on
This is the default behavior. When GDB sets a breakpoint, it will try to use the
target memory map to decide if software or hardware breakpoint must be used.

set breakpoint auto-hw off
This indicates GDB should not automatically select breakpoint type. If the
target provides a memory map, GDB will warn when trying to set software
breakpoint at a read-only address.

GDB normally implements breakpoints by replacing the program code at the breakpoint
address with a special instruction, which, when executed, given control to the debugger.
By default, the program code is so modified only when the program is resumed. As soon as
the program stops, GDB restores the original instructions. This behaviour guards against
leaving breakpoints inserted in the target should gdb abrubptly disconnect. However, with

Chapter 5: Stopping and Continuing 51

slow remote targets, inserting and removing breakpoint can reduce the performance. This
behavior can be controlled with the following commands::

set breakpoint always-inserted off
All breakpoints, including newly added by the user, are inserted in the target
only when the target is resumed. All breakpoints are removed from the target
when it stops. This is the default mode.

set breakpoint always—inserted on
Causes all breakpoints to be inserted in the target at all times. If the user adds
a new breakpoint, or changes an existing breakpoint, the breakpoints in the
target are updated immediately. A breakpoint is removed from the target only
when breakpoint itself is deleted.

GDB handles conditional breakpoints by evaluating these conditions when a breakpoint
breaks. If the condition is true, then the process being debugged stops, otherwise the process
is resumed.

If the target supports evaluating conditions on its end, GDB may download the break-
point, together with its conditions, to it.

This feature can be controlled via the following commands:

set breakpoint condition-evaluation host
This option commands GDB to evaluate the breakpoint conditions on the host’s
side. Unconditional breakpoints are sent to the target which in turn receives
the triggers and reports them back to GDB for condition evaluation. This is
the standard evaluation mode.

set breakpoint condition-evaluation target

This option commands GDB to download breakpoint conditions to the target at
the moment of their insertion. The target is responsible for evaluating the con-
ditional expression and reporting breakpoint stop events back to GDB whenever
the condition is true. Due to limitations of target-side evaluation, some condi-
tions cannot be evaluated there, e.g., conditions that depend on local data that
is only known to the host. Examples include conditional expressions involving
convenience variables, complex types that cannot be handled by the agent ex-
pression parser and expressions that are too long to be sent over to the target,
specially when the target is a remote system. In these cases, the conditions will
be evaluated by GDB.

set breakpoint condition-evaluation auto
This is the default mode. If the target supports evaluating breakpoint condi-
tions on its end, GDB will download breakpoint conditions to the target (limi-
tations mentioned previously apply). If the target does not support breakpoint
condition evaluation, then GDB will fallback to evaluating all these conditions
on the host’s side.

GDB itself sometimes sets breakpoints in your program for special purposes, such as
proper handling of longjmp (in C programs). These internal breakpoints are assigned
negative numbers, starting with -1; ‘info breakpoints’ does not display them. You can
see these breakpoints with the GDB maintenance command ‘maint info breakpoints’ (see
[maint info breakpoints|, page 585).

52 Debugging with GDB

5.1.2 Setting Watchpoints

You can use a watchpoint to stop execution whenever the value of an expression changes,
without having to predict a particular place where this may happen. (This is sometimes
called a data breakpoint.) The expression may be as simple as the value of a single variable,
or as complex as many variables combined by operators. Examples include:

e A reference to the value of a single variable.

e An address cast to an appropriate data type. For example, ‘*(int *)0x12345678" will
watch a 4-byte region at the specified address (assuming an int occupies 4 bytes).

e An arbitrarily complex expression, such as ‘a*b + c¢/d’. The expression can use any op-
erators valid in the program’s native language (see Chapter 15 [Languages|, page 191).

You can set a watchpoint on an expression even if the expression can not be evaluated yet.
For instance, you can set a watchpoint on ‘*global_ptr’ before ‘global_ptr’ is initialized.
GDB will stop when your program sets ‘global_ptr’ and the expression produces a valid
value. If the expression becomes valid in some other way than changing a variable (e.g. if
the memory pointed to by ‘*global_ptr’ becomes readable as the result of a malloc call),
GDB may not stop until the next time the expression changes.

Depending on your system, watchpoints may be implemented in software or hardware.
GDB does software watchpointing by single-stepping your program and testing the variable’s
value each time, which is hundreds of times slower than normal execution. (But this may
still be worth it, to catch errors where you have no clue what part of your program is the
culprit.)

On some systems, such as most PowerPC or x86-based targets, GDB includes support
for hardware watchpoints, which do not slow down the running of your program.

watch [-1|-location| expr [thread thread-id] [mask maskvalue]
Set a watchpoint for an expression. GDB will break when the expression expr
is written into by the program and its value changes. The simplest (and the
most popular) use of this command is to watch the value of a single variable:
(gdb) watch foo

If the command includes a [thread thread-id] argument, GDB breaks only
when the thread identified by thread-id changes the value of expr. If any other
threads change the value of expr, GDB will not break. Note that watchpoints
restricted to a single thread in this way only work with Hardware Watchpoints.

Ordinarily a watchpoint respects the scope of variables in expr (see below).
The -location argument tells GDB to instead watch the memory referred to
by expr. In this case, GDB will evaluate expr, take the address of the result, and
watch the memory at that address. The type of the result is used to determine
the size of the watched memory. If the expression’s result does not have an
address, then GDB will print an error.

The [mask maskvalue| argument allows creation of masked watchpoints, if the
current architecture supports this feature (e.g., PowerPC Embedded architec-
ture, see Section 21.3.6 [PowerPC Embedded], page 296.) A masked watchpoint
specifies a mask in addition to an address to watch. The mask specifies that
some bits of an address (the bits which are reset in the mask) should be ignored

Chapter 5: Stopping and Continuing 53

when matching the address accessed by the inferior against the watchpoint ad-
dress. Thus, a masked watchpoint watches many addresses simultaneously—
those addresses whose unmasked bits are identical to the unmasked bits in the
watchpoint address. The mask argument implies -~location. Examples:

(gdb) watch foo mask OxffffOOff
(gdb) watch *Oxdeadbeef mask Oxffffff00

rwatch [-1|-location| expr [thread thread-id| [mask maskvalue]
Set a watchpoint that will break when the value of expr is read by the program.

awatch [-1|-location| expr [thread thread-id| [mask maskvalue]
Set a watchpoint that will break when expr is either read from or written into
by the program.

info watchpoints [1ist...]
This command prints a list of watchpoints, using the same format as info
break (see Section 5.1.1 [Set Breaks|, page 46).

If you watch for a change in a numerically entered address you need to dereference it, as
the address itself is just a constant number which will never change. GDB refuses to create
a watchpoint that watches a never-changing value:

(gdb) watch 0x600850

Cannot watch constant value 0x600850.
(gdb) watch *(int *) 0x600850
Watchpoint 1: *(int *) 6293584

GDB sets a hardware watchpoint if possible. Hardware watchpoints execute very quickly,
and the debugger reports a change in value at the exact instruction where the change occurs.
If GDB cannot set a hardware watchpoint, it sets a software watchpoint, which executes more
slowly and reports the change in value at the next statement, not the instruction, after the
change occurs.

You can force GDB to use only software watchpoints with the set can-use-hw-
watchpoints 0 command. With this variable set to zero, GDB will never try to use
hardware watchpoints, even if the underlying system supports them. (Note that
hardware-assisted watchpoints that were set before setting can-use-hw-watchpoints to
zero will still use the hardware mechanism of watching expression values.)

set can-use-hw-watchpoints
Set whether or not to use hardware watchpoints.

show can-use-hw-watchpoints
Show the current mode of using hardware watchpoints.

For remote targets, you can restrict the number of hardware watchpoints GDB will use,
see [set remote hardware-breakpoint-limit], page 273.
When you issue the watch command, GDB reports
Hardware watchpoint num: expr
if it was able to set a hardware watchpoint.
Currently, the awatch and rwatch commands can only set hardware watchpoints, be-

cause accesses to data that don’t change the value of the watched expression cannot be
detected without examining every instruction as it is being executed, and GDB does not do

54 Debugging with GDB

that currently. If GDB finds that it is unable to set a hardware breakpoint with the awatch
or rwatch command, it will print a message like this:

Expression cannot be implemented with read/access watchpoint.

Sometimes, GDB cannot set a hardware watchpoint because the data type of the watched
expression is wider than what a hardware watchpoint on the target machine can handle.
For example, some systems can only watch regions that are up to 4 bytes wide; on such sys-
tems you cannot set hardware watchpoints for an expression that yields a double-precision
floating-point number (which is typically 8 bytes wide). As a work-around, it might be pos-
sible to break the large region into a series of smaller ones and watch them with separate
watchpoints.

If you set too many hardware watchpoints, GDB might be unable to insert all of them
when you resume the execution of your program. Since the precise number of active watch-
points is unknown until such time as the program is about to be resumed, GDB might not be
able to warn you about this when you set the watchpoints, and the warning will be printed
only when the program is resumed:

Hardware watchpoint num: Could not insert watchpoint
If this happens, delete or disable some of the watchpoints.

Watching complex expressions that reference many variables can also exhaust the re-
sources available for hardware-assisted watchpoints. That’s because GDB needs to watch
every variable in the expression with separately allocated resources.

If you call a function interactively using print or call, any watchpoints you have set
will be inactive until GDB reaches another kind of breakpoint or the call completes.

GDB automatically deletes watchpoints that watch local (automatic) variables, or expres-
sions that involve such variables, when they go out of scope, that is, when the execution
leaves the block in which these variables were defined. In particular, when the program
being debugged terminates, all local variables go out of scope, and so only watchpoints
that watch global variables remain set. If you rerun the program, you will need to set all
such watchpoints again. One way of doing that would be to set a code breakpoint at the
entry to the main function and when it breaks, set all the watchpoints.

In multi-threaded programs, watchpoints will detect changes to the watched expression
from every thread.

Warning: In multi-threaded programs, software watchpoints have only limited
usefulness. If GDB creates a software watchpoint, it can only watch the value
of an expression in a single thread. If you are confident that the expression can
only change due to the current thread’s activity (and if you are also confident
that no other thread can become current), then you can use software watch-
points as usual. However, GDB may not notice when a non-current thread’s
activity changes the expression. (Hardware watchpoints, in contrast, watch an
expression in all threads.)

See [set remote hardware-watchpoint-limit], page 273.

5.1.3 Setting Catchpoints

You can use catchpoints to cause the debugger to stop for certain kinds of program events,
such as C++ exceptions or the loading of a shared library. Use the catch command to set
a catchpoint.

Chapter 5: Stopping and Continuing 55

catch event
Stop when event occurs. The event can be any of the following:

throw [regexp]
rethrow [regexp|
catch [regexp]
The throwing, re-throwing, or catching of a C++ exception.

If regexp is given, then only exceptions whose type matches the
regular expression will be caught.

The convenience variable $_exception is available at an exception-
related catchpoint, on some systems. This holds the exception be-
ing thrown.

There are currently some limitations to C++ exception handling in
GDB:

e The support for these commands is system-dependent.
Currently, only systems using the ‘gnu-v3’ C++ ABI (see
Section 22.6 [ABI], page 309) are supported.

e The regular expression feature and the $_exception conve-
nience variable rely on the presence of some SDT probes in
libstdc++. If these probes are not present, then these fea-
tures cannot be used. These probes were first available in the
GCC 4.8 release, but whether or not they are available in your
GCC also depends on how it was built.

e The $_exception convenience variable is only valid at the in-
struction at which an exception-related catchpoint is set.

e When an exception-related catchpoint is hit, GDB stops at a
location in the system library which implements runtime ex-
ception support for C++, usually 1ibstdc++. You can use up
(see Section 8.3 [Selection], page 98) to get to your code.

e If you call a function interactively, GDB normally returns con-
trol to you when the function has finished executing. If the call
raises an exception, however, the call may bypass the mecha-
nism that returns control to you and cause your program either
to abort or to simply continue running until it hits a break-
point, catches a signal that GDB is listening for, or exits. This
is the case even if you set a catchpoint for the exception; catch-
points on exceptions are disabled within interactive calls. See
Section 17.5 [Calling], page 233, for information on controlling
this with set unwind-on-terminating-exception.

e You cannot raise an exception interactively.
e You cannot install an exception handler interactively.
exception
An Ada exception being raised. If an exception name is specified

at the end of the command (eg catch exception Program_Error),
the debugger will stop only when this specific exception is raised.

56

Debugging with GDB

Otherwise, the debugger stops execution when any Ada exception
is raised.

When inserting an exception catchpoint on a user-defined exception
whose name is identical to one of the exceptions defined by the lan-
guage, the fully qualified name must be used as the exception name.
Otherwise, GDB will assume that it should stop on the pre-defined
exception rather than the user-defined one. For instance, assum-
ing an exception called Constraint_Error is defined in package
Pck, then the command to use to catch such exceptions is catch
exception Pck.Constraint_Error.

exception unhandled
An exception that was raised but is not handled by the program.

assert A failed Ada assertion.
exec A call to exec.
syscall

syscall [name | number | group:groupname | g:groupname] ...
A call to or return from a system call, a.k.a. syscall. A syscall is a
mechanism for application programs to request a service from the
operating system (OS) or one of the OS system services. GDB can
catch some or all of the syscalls issued by the debuggee, and show
the related information for each syscall. If no argument is specified,
calls to and returns from all system calls will be caught.

name can be any system call name that is valid for the underlying
OS. Just what syscalls are valid depends on the OS. On GNU and
Unix systems, you can find the full list of valid syscall names on
/usr/include/asm/unistd.h.

Normally, GDB knows in advance which syscalls are valid for each
OS, so you can use the GDB command-line completion facilities (see
Section 3.2 [command completion], page 19) to list the available
choices.

You may also specify the system call numerically. A syscall’s num-
ber is the value passed to the OS’s syscall dispatcher to identify
the requested service. When you specify the syscall by its name,
GDB uses its database of syscalls to convert the name into the cor-
responding numeric code, but using the number directly may be
useful if GDB’s database does not have the complete list of syscalls
on your system (e.g., because GDB lags behind the OS upgrades).

You may specify a group of related syscalls to be caught at once us-
ing the group: syntax (g: is a shorter equivalent). For instance, on
some platforms GDB allows you to catch all network related syscalls,
by passing the argument group:network to catch syscall. Note
that not all syscall groups are available in every system. You can
use the command completion facilities (see Section 3.2 [command
completion], page 19) to list the syscall groups available on your
environment.

Chapter 5: Stopping and Continuing 57

The example below illustrates how this command works if you don’t
provide arguments to it:

(gdb) catch syscall

Catchpoint 1 (syscall)

(gdb) r
Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall ’close’), \
Oxffffe424 in __kernel_vsyscall ()

(gdb) ¢

Continuing.

Catchpoint 1 (returned from syscall ’close’), \
Oxffffe424 in __kernel_vsyscall ()
(gdb)

Here is an example of catching a system call by name:
(gdb) catch syscall chroot
Catchpoint 1 (syscall ’chroot’ [61])

(gdb) r
Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall ’chroot’), \
Oxffffe424 in __kernel_vsyscall ()

(gdb) ¢

Continuing.

Catchpoint 1 (returned from syscall ’chroot’), \

Oxffffe424 in __kernel_vsyscall ()

(gdb)
An example of specifying a system call numerically. In the case
below, the syscall number has a corresponding entry in the XML
file, so GDB finds its name and prints it:

(gdb) catch syscall 252

Catchpoint 1 (syscall(s) ’exit_group’)

(gdb) r
Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall ’exit_group’), \
Oxffffe424 in __kernel_vsyscall ()

(gdb) c

Continuing.

Program exited normally.
(gdb)

Here is an example of catching a syscall group:
(gdb) catch syscall group:process
Catchpoint 1 (syscalls ’exit’ [1] ’fork’ [2] ’waitpid’ [7]
’execve’ [11] ’wait4’ [114] ’clone’ [120] ’vfork’ [190]
’exit_group’ [252] ’waitid’ [284] ’unshare’ [310])

(gdb) r
Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall fork), 0x00007ffff7df4e27 in open64 ()
from /1ib64/1d-1linux-x86-64.s0.2

58

Debugging with GDB

(gdb) ¢

Continuing.
However, there can be situations when there is no corresponding
name in XML file for that syscall number. In this case, GDB prints
a warning message saying that it was not able to find the syscall
name, but the catchpoint will be set anyway. See the example
below:

(gdb) catch syscall 764

warning: The number ’764’ does not represent a known syscall.

Catchpoint 2 (syscall 764)

(gdb)
If you configure GDB using the ‘--without-expat’ option, it will
not be able to display syscall names. Also, if your architecture does
not have an XML file describing its system calls, you will not be
able to see the syscall names. It is important to notice that these
two features are used for accessing the syscall name database. In
either case, you will see a warning like this:

4

(gdb) catch syscall
warning: Could not open "syscalls/i386-linux.xml"
warning: Could not load the syscall XML file ’syscalls/i386-linux.xml’.
GDB will not be able to display syscall names.
Catchpoint 1 (syscall)
(gdb)
Of course, the file name will change depending on your architecture
and system.

Still using the example above, you can also try to catch a syscall
by its number. In this case, you would see something like:

(gdb) catch syscall 252

Catchpoint 1 (syscall(s) 252)

Again, in this case GDB would not be able to display syscall’s names.
fork A call to fork.
vfork A call to vfork.

load [regexp]

unload [regexp]
The loading or unloading of a shared library. If regexp is given,
then the catchpoint will stop only if the regular expression matches
one of the affected libraries.

signal [signal... | ‘all’]
The delivery of a signal.
With no arguments, this catchpoint will catch any signal that is not
used internally by GDB, specifically, all signals except ‘SIGTRAP’ and
‘SIGINT’.

With the argument ‘all’,; all signals, including those used by GDB,
will be caught. This argument cannot be used with other signal
names.

Chapter 5: Stopping and Continuing 59

Otherwise, the arguments are a list of signal names as given to
handle (see Section 5.4 [Signals|, page 74). Only signals specified
in this list will be caught.

One reason that catch signal can be more useful than handle is
that you can attach commands and conditions to the catchpoint.

When a signal is caught by a catchpoint, the signal’s stop and
print settings, as specified by handle, are ignored. However,
whether the signal is still delivered to the inferior depends on the
pass setting; this can be changed in the catchpoint’s commands.

tcatch event
Set a catchpoint that is enabled only for one stop. The catchpoint is automat-
ically deleted after the first time the event is caught.

Use the info break command to list the current catchpoints.

5.1.4 Deleting Breakpoints

It is often necessary to eliminate a breakpoint, watchpoint, or catchpoint once it has done
its job and you no longer want your program to stop there. This is called deleting the
breakpoint. A breakpoint that has been deleted no longer exists; it is forgotten.

With the clear command you can delete breakpoints according to where they are in your
program. With the delete command you can delete individual breakpoints, watchpoints,
or catchpoints by specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. GDB automatically ignores
breakpoints on the first instruction to be executed when you continue execution without
changing the execution address.

clear Delete any breakpoints at the next instruction to be executed in the selected
stack frame (see Section 8.3 [Selecting a Frame|, page 98). When the innermost
frame is selected, this is a good way to delete a breakpoint where your program
just stopped.

clear location
Delete any breakpoints set at the specified location. See Section 9.2 [Specify
Location], page 104, for the various forms of location; the most useful ones are
listed below:

clear function
clear filename:function
Delete any breakpoints set at entry to the named function.

clear linenum

clear filename:linenum
Delete any breakpoints set at or within the code of the specified
linenum of the specified filename.

delete [breakpoints] [list...]
Delete the breakpoints, watchpoints, or catchpoints of the breakpoint list spec-
ified as argument. If no argument is specified, delete all breakpoints (GDB
asks confirmation, unless you have set confirm off). You can abbreviate this
command as d.

60 Debugging with GDB

5.1.5 Disabling Breakpoints

Rather than deleting a breakpoint, watchpoint, or catchpoint, you might prefer to disable
it. This makes the breakpoint inoperative as if it had been deleted, but remembers the
information on the breakpoint so that you can enable it again later.

You disable and enable breakpoints, watchpoints, and catchpoints with the enable and
disable commands, optionally specifying one or more breakpoint numbers as arguments.
Use info break to print a list of all breakpoints, watchpoints, and catchpoints if you do
not know which numbers to use.

Disabling and enabling a breakpoint that has multiple locations affects all of its locations.

A breakpoint, watchpoint, or catchpoint can have any of several different states of en-
ablement:

e FEnabled. The breakpoint stops your program. A breakpoint set with the break com-
mand starts out in this state.

e Disabled. The breakpoint has no effect on your program.
e Enabled once. The breakpoint stops your program, but then becomes disabled.

e Enabled for a count. The breakpoint stops your program for the next N times, then
becomes disabled.

e Enabled for deletion. The breakpoint stops your program, but immediately after it
does so it is deleted permanently. A breakpoint set with the tbreak command starts
out in this state.

You can use the following commands to enable or disable breakpoints, watchpoints, and
catchpoints:

disable [breakpoints] [1ist...]
Disable the specified breakpoints—or all breakpoints, if none are listed. A
disabled breakpoint has no effect but is not forgotten. All options such as
ignore-counts, conditions and commands are remembered in case the breakpoint
is enabled again later. You may abbreviate disable as dis.

enable [breakpoints] [list...]
Enable the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping your program.

enable [breakpoints]| once list...
Enable the specified breakpoints temporarily. GDB disables any of these break-
points immediately after stopping your program.

enable [breakpoints| count count list...
Enable the specified breakpoints temporarily. GDB records count with each of
the specified breakpoints, and decrements a breakpoint’s count when it is hit.
When any count reaches 0, GDB disables that breakpoint. If a breakpoint has
an ignore count (see Section 5.1.6 [Break Conditions|, page 61), that will be
decremented to 0 before count is affected.

enable [breakpoints| delete list...
Enable the specified breakpoints to work once, then die. GDB deletes any of
these breakpoints as soon as your program stops there. Breakpoints set by the
tbreak command start out in this state.

Chapter 5: Stopping and Continuing 61

Except for a breakpoint set with tbreak (see Section 5.1.1 [Setting Breakpoints],
page 46), breakpoints that you set are initially enabled; subsequently, they become
disabled or enabled only when you use one of the commands above. (The command until
can set and delete a breakpoint of its own, but it does not change the state of your other
breakpoints; see Section 5.2 [Continuing and Stepping], page 68.)

5.1.6 Break Conditions

The simplest sort of breakpoint breaks every time your program reaches a specified place.
You can also specify a condition for a breakpoint. A condition is just a Boolean expression in
your programming language (see Section 10.1 [Expressions|, page 117). A breakpoint with
a condition evaluates the expression each time your program reaches it, and your program
stops only if the condition is true.

This is the converse of using assertions for program validation; in that situation, you
want to stop when the assertion is violated—that is, when the condition is false. In C, if
you want to test an assertion expressed by the condition assert, you should set the condition
‘I assert’ on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them, since a watchpoint
is inspecting the value of an expression anyhow—but it might be simpler, say, to just set a
watchpoint on a variable name, and specify a condition that tests whether the new value is
an interesting one.

Break conditions can have side effects, and may even call functions in your program. This
can be useful, for example, to activate functions that log program progress, or to use your
own print functions to format special data structures. The effects are completely predictable
unless there is another enabled breakpoint at the same address. (In that case, GDB might
see the other breakpoint first and stop your program without checking the condition of
this one.) Note that breakpoint commands are usually more convenient and flexible than
break conditions for the purpose of performing side effects when a breakpoint is reached
(see Section 5.1.7 [Breakpoint Command Lists|, page 62).

Breakpoint conditions can also be evaluated on the target’s side if the target supports
it. Instead of evaluating the conditions locally, GDB encodes the expression into an agent
expression (see Appendix F [Agent Expressions|, page 665) suitable for execution on the
target, independently of GDB. Global variables become raw memory locations, locals become
stack accesses, and so forth.

In this case, GDB will only be notified of a breakpoint trigger when its condition evaluates
to true. This mechanism may provide faster response times depending on the performance
characteristics of the target since it does not need to keep GDB informed about every break-
point trigger, even those with false conditions.

Break conditions can be specified when a breakpoint is set, by using ‘if’ in the arguments
to the break command. See Section 5.1.1 [Setting Breakpoints|, page 46. They can also be
changed at any time with the condition command.

You can also use the if keyword with the watch command. The catch command does
not recognize the if keyword; condition is the only way to impose a further condition on
a catchpoint.

62 Debugging with GDB

condition bnum expression

Specify expression as the break condition for breakpoint, watchpoint, or catch-
point number bnum. After you set a condition, breakpoint bnum stops your
program only if the value of expression is true (nonzero, in C). When you
use condition, GDB checks expression immediately for syntactic correctness,
and to determine whether symbols in it have referents in the context of your
breakpoint. If expression uses symbols not referenced in the context of the
breakpoint, GDB prints an error message:

No symbol "foo" in current context.

GDB does not actually evaluate expression at the time the condition command
(or a command that sets a breakpoint with a condition, like break if ...) is
given, however. See Section 10.1 [Expressions], page 117.

condition bnum
Remove the condition from breakpoint number bnum. It becomes an ordinary
unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the breakpoint has been
reached a certain number of times. This is so useful that there is a special way to do it,
using the ignore count of the breakpoint. Every breakpoint has an ignore count, which is
an integer. Most of the time, the ignore count is zero, and therefore has no effect. But if
your program reaches a breakpoint whose ignore count is positive, then instead of stopping,
it just decrements the ignore count by one and continues. As a result, if the ignore count
value is n, the breakpoint does not stop the next n times your program reaches it.

ignore bnum count
Set the ignore count of breakpoint number bnum to count. The next count
times the breakpoint is reached, your program’s execution does not stop; other
than to decrement the ignore count, GDB takes no action.

To make the breakpoint stop the next time it is reached, specify a count of zero.

When you use continue to resume execution of your program from a break-
point, you can specify an ignore count directly as an argument to continue,
rather than using ignore. See Section 5.2 [Continuing and Stepping], page 68.

If a breakpoint has a positive ignore count and a condition, the condition is
not checked. Once the ignore count reaches zero, GDB resumes checking the
condition.

You could achieve the effect of the ignore count with a condition such as
‘$foo-- <= 0’ using a debugger convenience variable that is decremented each
time. See Section 10.11 [Convenience Variables], page 139.

Ignore counts apply to breakpoints, watchpoints, and catchpoints.

5.1.7 Breakpoint Command Lists

You can give any breakpoint (or watchpoint or catchpoint) a series of commands to execute
when your program stops due to that breakpoint. For example, you might want to print
the values of certain expressions, or enable other breakpoints.

Chapter 5: Stopping and Continuing 63

commands [list...]
. command-1ist ...
end Specify a list of commands for the given breakpoints. The commands themselves
appear on the following lines. Type a line containing just end to terminate the
commands.

To remove all commands from a breakpoint, type commands and follow it im-
mediately with end; that is, give no commands.

With no argument, commands refers to the last breakpoint, watchpoint, or catch-
point set (not to the breakpoint most recently encountered). If the most recent
breakpoints were set with a single command, then the commands will apply
to all the breakpoints set by that command. This applies to breakpoints set
by rbreak, and also applies when a single break command creates multiple
breakpoints (see Section 10.2 [Ambiguous Expressions|, page 118).

Pressing RET as a means of repeating the last GDB command is disabled within a
command-list.

You can use breakpoint commands to start your program up again. Simply use the
continue command, or step, or any other command that resumes execution.

Any other commands in the command list, after a command that resumes execution, are
ignored. This is because any time you resume execution (even with a simple next or step),
you may encounter another breakpoint—which could have its own command list, leading
to ambiguities about which list to execute.

If the first command you specify in a command list is silent, the usual message about
stopping at a breakpoint is not printed. This may be desirable for breakpoints that are
to print a specific message and then continue. If none of the remaining commands print
anything, you see no sign that the breakpoint was reached. silent is meaningful only at
the beginning of a breakpoint command list.

The commands echo, output, and printf allow you to print precisely controlled output,
and are often useful in silent breakpoints. See Section 23.1.4 [Commands for Controlled
Output], page 328.

For example, here is how you could use breakpoint commands to print the value of x at
entry to foo whenever x is positive.
break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end
One application for breakpoint commands is to compensate for one bug so you can test
for another. Put a breakpoint just after the erroneous line of code, give it a condition
to detect the case in which something erroneous has been done, and give it commands to
assign correct values to any variables that need them. End with the continue command so
that your program does not stop, and start with the silent command so that no output
is produced. Here is an example:

break 403
commands
silent

64 Debugging with GDB

set x =y + 4
cont
end

5.1.8 Dynamic Printf

The dynamic printf command dprintf combines a breakpoint with formatted printing of
your program’s data to give you the effect of inserting printf calls into your program
on-the-fly, without having to recompile it.

In its most basic form, the output goes to the GDB console. However, you can set
the variable dprintf-style for alternate handling. For instance, you can ask to format
the output by calling your program’s printf function. This has the advantage that the
characters go to the program’s output device, so they can recorded in redirects to files and
so forth.

If you are doing remote debugging with a stub or agent, you can also ask to have the
printf handled by the remote agent. In addition to ensuring that the output goes to the
remote program’s device along with any other output the program might produce, you can
also ask that the dprintf remain active even after disconnecting from the remote target.
Using the stub/agent is also more efficient, as it can do everything without needing to
communicate with GDB.

dprintf location, template,expressionl,expression...]
Whenever execution reaches location, print the values of one or more expres-
sions under the control of the string template. To print several values, separate
them with commas.

set dprintf-style style
Set the dprintf output to be handled in one of several different styles enumerated
below. A change of style affects all existing dynamic printfs immediately. (If
you need individual control over the print commands, simply define normal
breakpoints with explicitly-supplied command lists.)

gdb Handle the output using the GDB printf command.

call Handle the output by calling a function in your program (normally
printf).

agent Have the remote debugging agent (such as gdbserver) handle the

output itself. This style is only available for agents that support
running commands on the target.

set dprintf-function function
Set the function to call if the dprintf style is call. By default its value is
printf. You may set it to any expression. that GDB can evaluate to a function,
as per the call command.

set dprintf-channel channel
Set a “channel” for dprintf. If set to a non-empty value, GDB will evaluate it as
an expression and pass the result as a first argument to the dprintf-function,
in the manner of fprintf and similar functions. Otherwise, the dprintf format
string will be the first argument, in the manner of printf.

Chapter 5: Stopping and Continuing 65

As an example, if you wanted dprintf output to go to a logfile that is a standard
I/0 stream assigned to the variable mylog, you could do the following:

(gdb) set dprintf-style call

(gdb) set dprintf-function fprintf

(gdb) set dprintf-channel mylog

(gdb) dprintf 25,"at line 25, glob=%d\n",glob
Dprintf 1 at 0x123456: file main.c, line 25.
(gdb) info break

1 dprintf keep y 0x00123456 in main at main.c:25
call (void) fprintf (mylog,"at line 25, glob=Y%d\n",glob)
continue

(gdb)

Note that the info break displays the dynamic printf commands as normal
breakpoint commands; you can thus easily see the effect of the variable settings.

set disconnected-dprintf on

set disconnected-dprintf off
Choose whether dprintf commands should continue to run if GDB has discon-
nected from the target. This only applies if the dprintf-style is agent.

show disconnected-dprintf off
Show the current choice for disconnected dprintf.

GDB does not check the validity of function and channel, relying on you to supply values
that are meaningful for the contexts in which they are being used. For instance, the function
and channel may be the values of local variables, but if that is the case, then all enabled
dynamic prints must be at locations within the scope of those locals. If evaluation fails,
GDB will report an error.

5.1.9 How to save breakpoints to a file
To save breakpoint definitions to a file use the save breakpoints command.

save breakpoints [filenamel

This command saves all current breakpoint definitions together with their com-
mands and ignore counts, into a file filename suitable for use in a later debug-
ging session. This includes all types of breakpoints (breakpoints, watchpoints,
catchpoints, tracepoints). To read the saved breakpoint definitions, use the
source command (see Section 23.1.3 [Command Files|, page 326). Note that
watchpoints with expressions involving local variables may fail to be recreated
because it may not be possible to access the context where the watchpoint is
valid anymore. Because the saved breakpoint definitions are simply a sequence
of GDB commands that recreate the breakpoints, you can edit the file in your
favorite editing program, and remove the breakpoint definitions you’re not in-
terested in, or that can no longer be recreated.

5.1.10 Static Probe Points

GDB supports SDT probes in the code. SDT stands for Statically Defined Tracing, and
the probes are designed to have a tiny runtime code and data footprint, and no dynamic
relocations.

66 Debugging with GDB

Currently, the following types of probes are supported on ELF-compatible systems:

e SystemTap (http://sourceware.org/systemtap/) SDT probes'. SystemTap probes
are usable from assembly, C and C++ languages®.

e DTrace (http://oss.oracle.com/projects/DTrace) USDT probes. DTrace probes
are usable from C and C++ languages.

Some SystemTap probes have an associated semaphore variable; for instance, this hap-
pens automatically if you defined your probe using a DTrace-style .d file. If your probe
has a semaphore, GDB will automatically enable it when you specify a breakpoint using
the ‘-probe-stap’ notation. But, if you put a breakpoint at a probe’s location by some
other method (e.g., break file:1line), then GDB will not automatically set the semaphore.
DTrace probes do not support semaphores.

You can examine the available static static probes using info probes, with optional
arguments:

info probes [type| [provider [name [objfilel]]
If given, type is either stap for listing SystemTap probes or dtrace for listing
DTrace probes. If omitted all probes are listed regardless of their types.

If given, provider is a regular expression used to match against provider names
when selecting which probes to list. If omitted, probes by all probes from all
providers are listed.

If given, name is a regular expression to match against probe names when
selecting which probes to list. If omitted, probe names are not considered when
deciding whether to display them.

If given, objfile is a regular expression used to select which object files (exe-
cutable or shared libraries) to examine. If not given, all object files are consid-
ered.

info probes all
List the available static probes, from all types.

Some probe points can be enabled and/or disabled. The effect of enabling or disabling
a probe depends on the type of probe being handled. Some DTrace probes can be enabled
or disabled, but SystemTap probes cannot be disabled.

You can enable (or disable) one or more probes using the following commands, with
optional arguments:

enable probes [provider [name [objfile]|]
If given, provider is a regular expression used to match against provider names
when selecting which probes to enable. If omitted, all probes from all providers
are enabled.

If given, name is a regular expression to match against probe names when
selecting which probes to enable. If omitted, probe names are not considered
when deciding whether to enable them.

1 See http://sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps for more information
on how to add SystemTap SDT probes in your applications.

2 See http://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation for a good reference on
how the SDT probes are implemented.

http://sourceware.org/systemtap/
http://oss.oracle.com/projects/DTrace
http://sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps
http://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation

Chapter 5: Stopping and Continuing 67

If given, objfile is a regular expression used to select which object files (exe-
cutable or shared libraries) to examine. If not given, all object files are consid-
ered.

disable probes [provider [name [objfilel||
See the enable probes command above for a description of the optional argu-
ments accepted by this command.

A probe may specify up to twelve arguments. These are available at the point at which
the probe is defined—that is, when the current PC is at the probe’s location. The argu-
ments are available using the convenience variables (see Section 10.11 [Convenience Vars|,
page 139) $_probe_arg0...$_probe_argll. In SystemTap probes each probe argument is
an integer of the appropriate size; types are not preserved. In DTrace probes types are
preserved provided that they are recognized as such by GDB; otherwise the value of the
probe argument will be a long integer. The convenience variable $_probe_argc holds the
number of arguments at the current probe point.

These variables are always available, but attempts to access them at any location other
than a probe point will cause GDB to give an error message.

5.1.11 “Cannot insert breakpoints”

If you request too many active hardware-assisted breakpoints and watchpoints, you will see
this error message:

Stopped; cannot insert breakpoints.

You may have requested too many hardware breakpoints and watchpoints.
This message is printed when you attempt to resume the program, since only then GDB
knows exactly how many hardware breakpoints and watchpoints it needs to insert.

When this message is printed, you need to disable or remove some of the hardware-
assisted breakpoints and watchpoints, and then continue.

5.1.12 “Breakpoint address adjusted...”

Some processor architectures place constraints on the addresses at which breakpoints may
be placed. For architectures thus constrained, GDB will attempt to adjust the breakpoint’s
address to comply with the constraints dictated by the architecture.

One example of such an architecture is the Fujitsu FR-V. The FR-V is a VLIW archi-
tecture in which a number of RISC-like instructions may be bundled together for parallel
execution. The FR-V architecture constrains the location of a breakpoint instruction within
such a bundle to the instruction with the lowest address. GDB honors this constraint by
adjusting a breakpoint’s address to the first in the bundle.

It is not uncommon for optimized code to have bundles which contain instructions from
different source statements, thus it may happen that a breakpoint’s address will be adjusted
from one source statement to another. Since this adjustment may significantly alter GDB’s
breakpoint related behavior from what the user expects, a warning is printed when the
breakpoint is first set and also when the breakpoint is hit.

A warning like the one below is printed when setting a breakpoint that’s been subject
to address adjustment:
warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.

68 Debugging with GDB

Such warnings are printed both for user settable and GDB’s internal breakpoints. If you
see one of these warnings, you should verify that a breakpoint set at the adjusted address
will have the desired affect. If not, the breakpoint in question may be removed and other
breakpoints may be set which will have the desired behavior. E.g., it may be sufficient to
place the breakpoint at a later instruction. A conditional breakpoint may also be useful in
some cases to prevent the breakpoint from triggering too often.

GDB will also issue a warning when stopping at one of these adjusted breakpoints:
warning: Breakpoint 1 address previously adjusted from 0x00010414
to 0x00010410.
When this warning is encountered, it may be too late to take remedial action except in
cases where the breakpoint is hit earlier or more frequently than expected.

5.2 Continuing and Stepping

Continuing means resuming program execution until your program completes normally. In
contrast, stepping means executing just one more “step” of your program, where “step”
may mean either one line of source code, or one machine instruction (depending on what
particular command you use). Either when continuing or when stepping, your program may
stop even sooner, due to a breakpoint or a signal. (If it stops due to a signal, you may want
to use handle, or use ‘signal 0’ to resume execution (see Section 5.4 [Signals|, page 74),
or you may step into the signal’s handler (see [stepping and signal handlers|, page 75).)

continue [ignore-count]

c [ignore-count]

fg [ignore-count]
Resume program execution, at the address where your program last stopped;
any breakpoints set at that address are bypassed. The optional argument
ignore-count allows you to specify a further number of times to ignore a break-
point at this location; its effect is like that of ignore (see Section 5.1.6 [Break
Conditions|, page 61).
The argument ignore-count is meaningful only when your program stopped due
to a breakpoint. At other times, the argument to continue is ignored.

The synonyms c and fg (for foreground, as the debugged program is deemed
to be the foreground program) are provided purely for convenience, and have
exactly the same behavior as continue.

To resume execution at a different place, you can use return (see Section 17.4 [Returning
from a Function], page 232) to go back to the calling function; or jump (see Section 17.2
[Continuing at a Different Address], page 230) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see Section 5.1 [Breakpoints;
Watchpoints; and Catchpoints|, page 45) at the beginning of the function or the section
of your program where a problem is believed to lie, run your program until it stops at
that breakpoint, and then step through the suspect area, examining the variables that are
interesting, until you see the problem happen.

step Continue running your program until control reaches a different source line,
then stop it and return control to GDB. This command is abbreviated s.

Chapter 5: Stopping and Continuing 69

Warning: If you use the step command while control is within
a function that was compiled without debugging information, ex-
ecution proceeds until control reaches a function that does have
debugging information. Likewise, it will not step into a function
which is compiled without debugging information. To step through
functions without debugging information, use the stepi command,
described below.

The step command only stops at the first instruction of a source line. This pre-
vents the multiple stops that could otherwise occur in switch statements, for
loops, etc. step continues to stop if a function that has debugging information
is called within the line. In other words, step steps inside any functions called
within the line.

Also, the step command only enters a function if there is line number infor-
mation for the function. Otherwise it acts like the next command. This avoids
problems when using cc -gl on MIPS machines. Previously, step entered sub-
routines if there was any debugging information about the routine.

step count
Continue running as in step, but do so count times. If a breakpoint is reached,
or a signal not related to stepping occurs before count steps, stepping stops
right away.

next [count]
Continue to the next source line in the current (innermost) stack frame. This
is similar to step, but function calls that appear within the line of code are
executed without stopping. Execution stops when control reaches a different
line of code at the original stack level that was executing when you gave the
next command. This command is abbreviated n.

An argument count is a repeat count, as for step.

The next command only stops at the first instruction of a source line. This
prevents multiple stops that could otherwise occur in switch statements, for
loops, etc.

set step—mode

set step-mode on
The set step-mode on command causes the step command to stop at the first
instruction of a function which contains no debug line information rather than
stepping over it.
This is useful in cases where you may be interested in inspecting the machine
instructions of a function which has no symbolic info and do not want GDB to
automatically skip over this function.

set step-mode off
Causes the step command to step over any functions which contains no debug
information. This is the default.

show step-mode
Show whether GDB will stop in or step over functions without source line debug
information.

70

finish

until

Debugging with GDB

Continue running until just after function in the selected stack frame returns.
Print the returned value (if any). This command can be abbreviated as fin.

Contrast this with the return command (see Section 17.4 [Returning from a
Function], page 232).

Continue running until a source line past the current line, in the current stack
frame, is reached. This command is used to avoid single stepping through a loop
more than once. It is like the next command, except that when until encoun-
ters a jump, it automatically continues execution until the program counter is
greater than the address of the jump.

This means that when you reach the end of a loop after single stepping though
it, until makes your program continue execution until it exits the loop. In con-
trast, a next command at the end of a loop simply steps back to the beginning
of the loop, which forces you to step through the next iteration.

until always stops your program if it attempts to exit the current stack frame.

until may produce somewhat counterintuitive results if the order of machine
code does not match the order of the source lines. For example, in the following
excerpt from a debugging session, the £ (frame) command shows that execution
is stopped at line 206; yet when we use until, we get to line 195:

(gdb) £

#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input () ;

(gdb) until

195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the compiler had generated
code for the loop closure test at the end, rather than the start, of the loop—
even though the test in a C for-loop is written before the body of the loop.
The until command appeared to step back to the beginning of the loop when
it advanced to this expression; however, it has not really gone to an earlier
statement—mnot in terms of the actual machine code.

until with no argument works by means of single instruction stepping, and
hence is slower than until with an argument.

until location

u location

Continue running your program until either the specified location is reached,
or the current stack frame returns. The location is any of the forms described
in Section 9.2 [Specify Location|, page 104. This form of the command uses
temporary breakpoints, and hence is quicker than until without an argument.
The specified location is actually reached only if it is in the current frame. This
implies that until can be used to skip over recursive function invocations. For
instance in the code below, if the current location is line 96, issuing until 99
will execute the program up to line 99 in the same invocation of factorial, i.e.,
after the inner invocations have returned.

94 int factorial (int value)
95 {
96 if (value > 1) {

Chapter 5: Stopping and Continuing 71

97 value *= factorial (value - 1);
98 }

99 return (value);

100 }

advance location
Continue running the program up to the given location. An argument is re-
quired, which should be of one of the forms described in Section 9.2 [Specify
Location], page 104. Execution will also stop upon exit from the current stack
frame. This command is similar to until, but advance will not skip over re-
cursive function calls, and the target location doesn’t have to be in the same
frame as the current one.

stepi

stepi arg

si Execute one machine instruction, then stop and return to the debugger.
It is often useful to do ‘display/i $pc’ when stepping by machine instructions.
This makes GDB automatically display the next instruction to be executed, each
time your program stops. See Section 10.7 [Automatic Display|, page 126.
An argument is a repeat count, as in step.

nexti

nexti arg

ni Execute one machine instruction, but if it is a function call, proceed until the

function returns.

An argument is a repeat count, as in next.

By default, and if available, GDB makes use of target-assisted range stepping. In other
words, whenever you use a stepping command (e.g., step, next), GDB tells the target to
step the corresponding range of instruction addresses instead of issuing multiple single-steps.
This speeds up line stepping, particularly for remote targets. Ideally, there should be no
reason you would want to turn range stepping off. However, it’s possible that a bug in the
debug info, a bug in the remote stub (for remote targets), or even a bug in ¢DB could make
line stepping behave incorrectly when target-assisted range stepping is enabled. You can
use the following command to turn off range stepping if necessary:

set range-stepping
show range-stepping
Control whether range stepping is enabled.

If on, and the target supports it, GDB tells the target to step a range of addresses
itself, instead of issuing multiple single-steps. If off, GDB always issues single-
steps, even if range stepping is supported by the target. The default is on.

5.3 Skipping Over Functions and Files

The program you are debugging may contain some functions which are uninteresting to
debug. The skip command lets you tell GDB to skip a function, all functions in a file or a
particular function in a particular file when stepping.

For example, consider the following C function:

72 Debugging with GDB

101 int func()

102 {

103 foo(boring());
104 bar (boring()) ;
105 }

Suppose you wish to step into the functions foo and bar, but you are not interested in
stepping through boring. If you run step at line 103, you’ll enter boring(), but if you run
next, you'll step over both foo and boring!

One solution is to step into boring and use the finish command to immediately exit
it. But this can become tedious if boring is called from many places.

A more flexible solution is to execute skip boring. This instructs GDB never to step
into boring. Now when you execute step at line 103, you’ll step over boring and directly
into foo.

Functions may be skipped by providing either a function name, linespec (see Section 9.2
[Specify Location|, page 104), regular expression that matches the function’s name, file
name or a glob-style pattern that matches the file name.

On Posix systems the form of the regular expression is “Extended Regular Expressions”.
See for example ‘man 7 regex’ on GNU/Linux systems. On non-Posix systems the form of
the regular expression is whatever is provided by the regcomp function of the underlying
system. See for example ‘man 7 glob’ on GNU/Linux systems for a description of glob-style
patterns.

skip [options|
The basic form of the skip command takes zero or more options that specify
what to skip. The options argument is any useful combination of the following:

-file file
-fi file Functions in file will be skipped over when stepping.

-gfile file-glob-pattern
-gfi file-glob-pattern
Functions in files matching file-glob-pattern will be skipped over
when stepping.
(gdb) skip -gfi utils/*.c

-function linespec

—-fu linespec
Functions named by linespec or the function containing the line
named by linespec will be skipped over when stepping. See
Section 9.2 [Specify Location], page 104.

-rfunction regexp

-rfu regexp
Functions whose name matches regexp will be skipped over when
stepping.
This form is useful for complex function names. For example, there
is generally no need to step into C++ std: :string constructors or
destructors. Plus with C++ templates it can be hard to write out
the full name of the function, and often it doesn’t matter what the

Chapter 5: Stopping and Continuing 73

template arguments are. Specifying the function to be skipped as
a regular expression makes this easier.

(gdb) skip -rfu “std::(allocator|basic_string)<.*>::77?\1 *\(
If you want to skip every templated C++ constructor and destructor
in the std namespace you can do:

(gdb) skip -rfu “std::([a-zA-z0-9_]+)<.*>::77\1 *\(

If no options are specified, the function you’re currently debugging will be
skipped.

skip function [linespec]
After running this command, the function named by linespec or the function
containing the line named by linespec will be skipped over when stepping. See
Section 9.2 [Specify Location], page 104.

If you do not specify linespec, the function you’re currently debugging will be
skipped.

(If you have a function called file that you want to skip, use skip function
file.)

skip file [filename]
After running this command, any function whose source lives in filename will
be skipped over when stepping.
(gdb) skip file boring.c
File boring.c will be skipped when stepping.
If you do not specify filename, functions whose source lives in the file you're
currently debugging will be skipped.

Skips can be listed, deleted, disabled, and enabled, much like breakpoints. These are
the commands for managing your list of skips:

info skip [range]
Print details about the specified skip(s). If range is not specified, print a table

with details about all functions and files marked for skipping. info skip prints
the following information about each skip:

Identifier A number identifying this skip.

Enabled or Disabled
Enabled skips are marked with ‘y’. Disabled skips are marked with

‘n’.
Glob If the file name is a ‘glob’ pattern this is ‘y’. Otherwise it is ‘n’.
File The name or ‘glob’ pattern of the file to be skipped. If no file is

specified this is ‘<none>’.

RE If the function name is a ‘regular expression’ this is ‘y’. Other-
wise it is ‘n’.

Function The name or regular expression of the function to skip. If no func-
tion is specified this is ‘<none>’.

skip delete [range]
Delete the specified skip(s). If range is not specified, delete all skips.

74 Debugging with GDB

skip enable [range]
Enable the specified skip(s). If range is not specified, enable all skips.

skip disable [range]
Disable the specified skip(s). If range is not specified, disable all skips.

5.4 Signals

A signal is an asynchronous event that can happen in a program. The operating system
defines the possible kinds of signals, and gives each kind a name and a number. For example,
in Unix SIGINT is the signal a program gets when you type an interrupt character (often
Ctrl-c); SIGSEGV is the signal a program gets from referencing a place in memory far
away from all the areas in use; SIGALRM occurs when the alarm clock timer goes off (which
happens only if your program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of your program.
Others, such as SIGSEGV, indicate errors; these signals are fatal (they kill your program
immediately) if the program has not specified in advance some other way to handle the
signal. SIGINT does not indicate an error in your program, but it is normally fatal so it can
carry out the purpose of the interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your program. You can tell
GDB in advance what to do for each kind of signal.

Normally, GDB is set up to let the non-erroneous signals like SIGALRM be silently passed
to your program (so as not to interfere with their role in the program’s functioning) but to
stop your program immediately whenever an error signal happens. You can change these
settings with the handle command.

info signals

info handle
Print a table of all the kinds of signals and how GDB has been told to handle
each one. You can use this to see the signal numbers of all the defined types of
signals.

info signals sig
Similar, but print information only about the specified signal number.
info handle is an alias for info signals.

catch signal [signal... | ‘all’]

Set a catchpoint for the indicated signals. See Section 5.1.3 [Set Catchpoints]
page 54, for details about this command.

9

handle signal [keywords. . .]
Change the way GDB handles signal signal. The signal can be the number of a
signal or its name (with or without the ‘SIG’ at the beginning); a list of signal
numbers of the form ‘Iow-high’; or the word ‘all’, meaning all the known
signals. Optional arguments keywords, described below, say what change to
make.

The keywords allowed by the handle command can be abbreviated. Their full names
are:

Chapter 5: Stopping and Continuing 75

nostop GDB should not stop your program when this signal happens. It may still print
a message telling you that the signal has come in.

stop GDB should stop your program when this signal happens. This implies the
print keyword as well.

print GDB should print a message when this signal happens.

noprint GDB should not mention the occurrence of the signal at all. This implies the
nostop keyword as well.

pass

noignore GDB should allow your program to see this signal; your program can handle the
signal, or else it may terminate if the signal is fatal and not handled. pass and
noignore are synonyms.

nopass
ignore GDB should not allow your program to see this signal. nopass and ignore are
synonyms.

When a signal stops your program, the signal is not visible to the program until you
continue. Your program sees the signal then, if pass is in effect for the signal in question
at that time. In other words, after GDB reports a signal, you can use the handle command
with pass or nopass to control whether your program sees that signal when you continue.

The default is set to nostop, noprint, pass for non-erroneous signals such as SIGALRM,
SIGWINCH and SIGCHLD, and to stop, print, pass for the erroneous signals.

You can also use the signal command to prevent your program from seeing a signal, or
cause it to see a signal it normally would not see, or to give it any signal at any time. For
example, if your program stopped due to some sort of memory reference error, you might
store correct values into the erroneous variables and continue, hoping to see more execution;
but your program would probably terminate immediately as a result of the fatal signal once
it saw the signal. To prevent this, you can continue with ‘signal 0’. See Section 17.3
[Giving your Program a Signal], page 231.

GDB optimizes for stepping the mainline code. If a signal that has handle nostop and
handle pass set arrives while a stepping command (e.g., stepi, step, next) is in progress,
GDB lets the signal handler run and then resumes stepping the mainline code once the signal
handler returns. In other words, GDB steps over the signal handler. This prevents signals
that you’ve specified as no