gcc_jit_type represents a type within the library.
Upcast a type to an object.
Types can be created in several ways:
fundamental types can be accessed using gcc_jit_context_get_type():
gcc_jit_type *int_type = gcc_jit_context_get_type (ctxt, GCC_JIT_TYPE_INT);
See gcc_jit_context_get_type() for the available types.
derived types can be accessed by using functions such as gcc_jit_type_get_pointer() and gcc_jit_type_get_const():
gcc_jit_type *const_int_star = gcc_jit_type_get_pointer (gcc_jit_type_get_const (int_type));
gcc_jit_type *int_const_star = gcc_jit_type_get_const (gcc_jit_type_get_pointer (int_type));
by creating structures (see below).
Access a specific type. The available types are:
enum gcc_jit_types value | Meaning |
---|---|
GCC_JIT_TYPE_VOID | C’s void type. |
GCC_JIT_TYPE_VOID_PTR | C’s void *. |
GCC_JIT_TYPE_BOOL | C++’s bool type; also C99’s _Bool type, aka bool if using stdbool.h. |
GCC_JIT_TYPE_CHAR | C’s char (of some signedness) |
GCC_JIT_TYPE_SIGNED_CHAR | C’s signed char |
GCC_JIT_TYPE_UNSIGNED_CHAR | C’s unsigned char |
GCC_JIT_TYPE_SHORT | C’s short (signed) |
GCC_JIT_TYPE_UNSIGNED_SHORT | C’s unsigned short |
GCC_JIT_TYPE_INT | C’s int (signed) |
GCC_JIT_TYPE_UNSIGNED_INT | C’s unsigned int |
GCC_JIT_TYPE_LONG | C’s long (signed) |
GCC_JIT_TYPE_UNSIGNED_LONG | C’s unsigned long |
GCC_JIT_TYPE_LONG_LONG | C99’s long long (signed) |
GCC_JIT_TYPE_UNSIGNED_LONG_LONG | C99’s unsigned long long |
GCC_JIT_TYPE_UINT8_T | C99’s uint8_t |
GCC_JIT_TYPE_UINT16_T | C99’s uint16_t |
GCC_JIT_TYPE_UINT32_T | C99’s uint32_t |
GCC_JIT_TYPE_UINT64_T | C99’s uint64_t |
GCC_JIT_TYPE_UINT128_T | C99’s __uint128_t |
GCC_JIT_TYPE_INT8_T | C99’s int8_t |
GCC_JIT_TYPE_INT16_T | C99’s int16_t |
GCC_JIT_TYPE_INT32_T | C99’s int32_t |
GCC_JIT_TYPE_INT64_T | C99’s int64_t |
GCC_JIT_TYPE_INT128_T | C99’s __int128_t |
GCC_JIT_TYPE_FLOAT | |
GCC_JIT_TYPE_DOUBLE | |
GCC_JIT_TYPE_LONG_DOUBLE | |
GCC_JIT_TYPE_CONST_CHAR_PTR | C type: (const char *) |
GCC_JIT_TYPE_SIZE_T | C’s size_t type |
GCC_JIT_TYPE_FILE_PTR | C type: (FILE *) |
GCC_JIT_TYPE_COMPLEX_FLOAT | C99’s _Complex float |
GCC_JIT_TYPE_COMPLEX_DOUBLE | C99’s _Complex double |
GCC_JIT_TYPE_COMPLEX_LONG_DOUBLE | C99’s _Complex long double |
Access the integer type of the given size.
Given type “T”, get type “T*”.
Given type “T”, get type “const T”.
Given type “T”, get type “volatile T”.
Given non-void type “T”, get type “T[N]” (for a constant N).
Given non-void type “T”, get type:
T __attribute__ ((aligned (ALIGNMENT_IN_BYTES)))
The alignment must be a power of two.
This entrypoint was added in LIBGCCJIT_ABI_7; you can test for its presence using
#ifdef LIBGCCJIT_HAVE_gcc_jit_type_get_aligned
Given type “T”, get type:
T __attribute__ ((vector_size (sizeof(T) * num_units))
T must be integral or floating point; num_units must be a power of two.
This can be used to construct a vector type in which operations are applied element-wise. The compiler will automatically use SIMD instructions where possible. See: https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
For example, assuming 4-byte ints, then:
typedef int v4si __attribute__ ((vector_size (16)));
can be obtained using:
gcc_jit_type *int_type = gcc_jit_context_get_type (ctxt,
GCC_JIT_TYPE_INT);
gcc_jit_type *v4si_type = gcc_jit_type_get_vector (int_type, 4);
This API entrypoint was added in LIBGCCJIT_ABI_8; you can test for its presence using
#ifdef LIBGCCJIT_HAVE_gcc_jit_type_get_vector
Vector rvalues can be generated using gcc_jit_context_new_rvalue_from_vector().
A compound type analagous to a C struct.
A field within a gcc_jit_struct.
You can model C struct types by creating gcc_jit_struct and gcc_jit_field instances, in either order:
by creating the fields, then the structure. For example, to model:
struct coord {double x; double y; };
you could call:
gcc_jit_field *field_x =
gcc_jit_context_new_field (ctxt, NULL, double_type, "x");
gcc_jit_field *field_y =
gcc_jit_context_new_field (ctxt, NULL, double_type, "y");
gcc_jit_field *fields[2] = {field_x, field_y};
gcc_jit_struct *coord =
gcc_jit_context_new_struct_type (ctxt, NULL, "coord", 2, fields);
by creating the structure, then populating it with fields, typically to allow modelling self-referential structs such as:
struct node { int m_hash; struct node *m_next; };
like this:
gcc_jit_type *node =
gcc_jit_context_new_opaque_struct (ctxt, NULL, "node");
gcc_jit_type *node_ptr =
gcc_jit_type_get_pointer (node);
gcc_jit_field *field_hash =
gcc_jit_context_new_field (ctxt, NULL, int_type, "m_hash");
gcc_jit_field *field_next =
gcc_jit_context_new_field (ctxt, NULL, node_ptr, "m_next");
gcc_jit_field *fields[2] = {field_hash, field_next};
gcc_jit_struct_set_fields (node, NULL, 2, fields);
Construct a new field, with the given type and name.
The parameter type must be non-void.
The parameter name must be non-NULL. The call takes a copy of the underlying string, so it is valid to pass in a pointer to an on-stack buffer.
Construct a new bit field, with the given type width and name.
The parameter name must be non-NULL. The call takes a copy of the underlying string, so it is valid to pass in a pointer to an on-stack buffer.
The parameter type must be an integer type.
The parameter width must be a positive integer that does not exceed the size of type.
This API entrypoint was added in LIBGCCJIT_ABI_12; you can test for its presence using
#ifdef LIBGCCJIT_HAVE_gcc_jit_context_new_bitfield
Upcast from field to object.
Construct a new struct type, with the given name and fields.
The parameter name must be non-NULL. The call takes a copy of the underlying string, so it is valid to pass in a pointer to an on-stack buffer.
Construct a new struct type, with the given name, but without specifying the fields. The fields can be omitted (in which case the size of the struct is not known), or later specified using gcc_jit_struct_set_fields().
The parameter name must be non-NULL. The call takes a copy of the underlying string, so it is valid to pass in a pointer to an on-stack buffer.
Upcast from struct to type.
Populate the fields of a formerly-opaque struct type.
This can only be called once on a given struct type.
Construct a new union type, with the given name and fields.
The parameter name must be non-NULL. It is copied, so the input buffer does not need to outlive the call.
Example of use:
union int_or_float
{
int as_int;
float as_float;
};
void
create_code (gcc_jit_context *ctxt, void *user_data)
{
/* Let's try to inject the equivalent of:
float
test_union (int i)
{
union int_or_float u;
u.as_int = i;
return u.as_float;
}
*/
gcc_jit_type *int_type =
gcc_jit_context_get_type (ctxt, GCC_JIT_TYPE_INT);
gcc_jit_type *float_type =
gcc_jit_context_get_type (ctxt, GCC_JIT_TYPE_FLOAT);
gcc_jit_field *as_int =
gcc_jit_context_new_field (ctxt,
NULL,
int_type,
"as_int");
gcc_jit_field *as_float =
gcc_jit_context_new_field (ctxt,
NULL,
float_type,
"as_float");
gcc_jit_field *fields[] = {as_int, as_float};
gcc_jit_type *union_type =
gcc_jit_context_new_union_type (ctxt, NULL,
"int_or_float", 2, fields);
/* Build the test function. */
gcc_jit_param *param_i =
gcc_jit_context_new_param (ctxt, NULL, int_type, "i");
gcc_jit_function *test_fn =
gcc_jit_context_new_function (ctxt, NULL,
GCC_JIT_FUNCTION_EXPORTED,
float_type,
"test_union",
1, ¶m_i,
0);
gcc_jit_lvalue *u =
gcc_jit_function_new_local (test_fn, NULL,
union_type, "u");
gcc_jit_block *block = gcc_jit_function_new_block (test_fn, NULL);
/* u.as_int = i; */
gcc_jit_block_add_assignment (
block,
NULL,
/* "u.as_int = ..." */
gcc_jit_lvalue_access_field (u,
NULL,
as_int),
gcc_jit_param_as_rvalue (param_i));
/* return u.as_float; */
gcc_jit_block_end_with_return (
block, NULL,
gcc_jit_rvalue_access_field (gcc_jit_lvalue_as_rvalue (u),
NULL,
as_float));
}
Function pointer types can be created using gcc_jit_context_new_function_ptr_type().
Get the element type of an array type or NULL if it’s not an array.
Return non-zero if the type is a bool.
Return the function type if it is one or NULL.
Given a function type, return its return type.
Given a function type, return its number of parameters.
Given a function type, return the type of the specified parameter.
Return non-zero if the type is an integral.
Return the type pointed by the pointer type or NULL if it’s not a pointer.
Given a type, return a dynamic cast to a vector type or NULL.
Given a type, return a dynamic cast to a struct type or NULL.
Given a vector type, return the number of units it contains.
Given a vector type, return the type of its elements.
Given a type, return the unqualified type, removing “const”, “volatile” and alignment qualifiers.
Get a struct field by index.
Get the number of fields in the struct.
The API entrypoints related to the reflection API:
- gcc_jit_function_type_get_return_type()
- gcc_jit_function_type_get_param_count()
- gcc_jit_function_type_get_param_type()
- gcc_jit_type_unqualified()
- gcc_jit_type_dyncast_array()
- gcc_jit_type_is_bool()
- gcc_jit_type_dyncast_function_ptr_type()
- gcc_jit_type_is_integral()
- gcc_jit_type_is_pointer()
- gcc_jit_type_dyncast_vector()
- gcc_jit_vector_type_get_element_type()
- gcc_jit_vector_type_get_num_units()
- gcc_jit_struct_get_field()
- gcc_jit_type_is_struct()
- gcc_jit_struct_get_field_count()
were added in LIBGCCJIT_ABI_16; you can test for their presence using
#ifdef LIBGCCJIT_HAVE_REFLECTION
Return non-zero if the two types are compatible. For instance, if GCC_JIT_TYPE_UINT64_T and GCC_JIT_TYPE_UNSIGNED_LONG are the same size on the target, this will return non-zero. The parameters ltype and rtype must be non-NULL. Return 0 on errors.
This entrypoint was added in LIBGCCJIT_ABI_20; you can test for its presence using
#ifdef LIBGCCJIT_HAVE_SIZED_INTEGERS
Return the size of a type, in bytes. It only works on integer types for now. The parameter type must be non-NULL. Return -1 on errors.
This entrypoint was added in LIBGCCJIT_ABI_20; you can test for its presence using
#ifdef LIBGCCJIT_HAVE_SIZED_INTEGERS